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ABSTRACT
Deep learning through supervised and unsupervised learning
has demonstrated human competitive performance on some
visual tasks; however, evolution played an important role in
the development of biological visual systems. Thus evolu-
tionary approaches, specifically the Hypercube-based Neu-
roEvolution of Augmenting Topologies, are applied to deep
learning tasks in this paper. Results indicate HyperNEAT
alone struggles in image classification, but trains effective
feature extractors for other machine learning approaches.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Computer Vision

General Terms
Algorithms; Experimentation

Keywords
Generative and Developmental Systems; Deep Learning

1. INTRODUCTION
Evolution is a significant contributor in creating biological

visual systems [3], thus a path for creating computational
approaches as effective as their biological counterparts is
neuro-evolution [7]. Research in deep learning has demon-
strated that mimicking the biological systems can provide
pathways to human-level capability on visual tasks [4]. This
paper investigates evolution for deep learning through the
Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT). The capability of learning representa-
tions through HyperNEAT is examined by combining Hy-
perNEAT with other learning approaches by transforming
inputs thro–ugh the HyperNEAT substrate, thereby extract-
ing features from the raw images. These features provide
the training data for the other machine learning (M)L ap-
proaches and the performance of the solution trained by
the ML approach informs the quality of the representation
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Figure 1: HyperNEAT Feature Learning. Hyper-
NEAT trains CPPNs (1) that generate ANN con-
nectivity (2). The ANN produces features from im-
ages (3). These features are given to another ma-
chine learning algorithm (4) that learns classifica-
tions of the features. The trained solution is evalu-
ated on testing data (5). Solution performance on
unseen data provides the fitness for HyperNEAT.

learned. Results show that HyperNEAT can effectively ex-
tract features for machine learning approaches.

2. FEATURE LEARNING HYPERNEAT
Hypercube-based NEAT (HyperNEAT; [5]) is a genera-

tive and developmental system (GDS) extension of NEAT
that enables effective evolution of high-dimensional ANNs.
The effectiveness of the geometry-based learning in Hyper-
NEAT has been demonstrated in multiple domains, such as
multi-agent predator prey [1] and RoboCup Keepaway [6].
A full description of HyperNEAT is in Stanley et al. [5].
Although the HyperNEAT succeeds in a number of chal-
lenging tasks [5, 2], it has not yet been applied to tasks
where deep learning is showing promise. To this end, Hy-
perNEAT is modified in two ways. First, the alternative
convolutional neural network architecture is substituted for
the ANN substrate. Second, HyperNEAT is applied as a
feature learner, rather than directly performing the task. In
this way, HyperNEAT trains an ANN that extracts features
that are given to another machine learning approach to solve
the problem. Thus, the performance of this learned solution
then defines the fitness score of the compositional pattern
producing network (CPPN) for HyperNEAT (figure 1). In
this way, HyperNEAT acts as a trainer for extracting the
best features for another machine learning approach.
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Figure 2: HyperNEAT-FL Classification Perfor-
mance. HyperNEAT alone performs worst with
a correct classification rate of 22.1%. BackProp,
KNN, K-Means, and SVMs have classification rates
of 63.9%, 71.4%, 68.8%, and 61.8% respectively.

3. EXPERIMENTS: MNIST
These investigations are conducted on the MNIST dataset.

Two substrate architectures are investigated; a traditional
ANN architecture (feed-forward, fully-connected, sigmoid
activation functions) and the CNN architecture (constrained
connectivity, alternating sigmoid and pooling layers). To op-
erate as a feature extractor, each image is passed through
the substrate to produce an associated feature vector and
this set of features is evaluated by learning through another
approach; either Backward Propagation, K-Nearest Neigh-
bors, K-Means clustering, or Support Vector Machines.

For each of these experiments, results are averaged over 30
independent runs wherein each run randomly selects 300 im-
ages for the training set and 300 images for the evaluation
set, evenly spread across the classes. For regular Hyper-
NEAT (i.e. not feature learning), fitness is determined by
applying the substrate to the training images. For the ML
approaches, the fitness is determined by applying the train-
ing solution to the evaluation set.

In the first experiment, different substrate architectures
are examined. A significant (p < 0.01, Student’s t-test)
difference is observed in the classification correctness be-
tween the ANN and CNN substrates as feature learners for
BackProp. The CNN substrate reaches a 61.8% correct
classification rate versus the ANN substrate with a 41.1%
classification rate. The second experiment examines Hy-
perNEAT’s performance as a feature learner with the CNN
substrate architecture (figure 2) contrasted with the perfor-
mance of HyperNEAT directly classifying images. Hyper-
NEAT as a feature learner significantly (p < 0.01) exceed
the performance of HyperNEAT alone on the task. Hyper-
NEAT with BackProp achieves a classification success rate
of 63.9%. Learning for SVMs has a similar performance level
at 61.8% correct classifications. HyperNEAT with KNN has
the best classification rate of 71.4% over K-Means’s 68.8%.
Finally, generalization is examined (figure 3), by evaluating
the champions of each generation on images not seen during
evolution. The percentage change in training and testing
performance is then measured. At the beginning of train-
ing, all the approaches significantly fluctuate in the differ-
ence between training and testing performance. However, as
training continues, the features generalize better to the test-

Figure 3: Generalization Performance. Each gener-
ation champion’s generalization performance is mea-
sured by the percent difference between training
performance during evolution and testing perfor-
mance, where the ML approach is both trained and
tested on images unseen during evolution.

ing set, such that, by the end of training most approaches
are less than two percent off the training performance.

4. CONCLUSION
This paper investigated deep learning through neuro-evo–

lution, specifically HyperNEAT. HyperNEAT alone is shown
to struggle in finding ANNs that perform well directly in im-
age classification. However, HyperNEAT demonstrates an
effective ability to learn feature extractors for other machine
learning approaches. Thus HyperNEAT provides a poten-
tially interesting path for combining reinforcement learning
and supervised learning in image classification, as evolution
and lifetime learning combine to create the capabilities in
biological neural networks.
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