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ABSTRACT
Particle Swarm Optimization(PSO) has shown its advan-
tages not only in dealing with continous optimization prob-
lems, but also in dealing with discrete optimization prob-
lems. Binary Particle Swarm Optimization(BPSO), the dis-
crete version of PSO, has been widely applied to many ar-
eas. Although there are some variations aiming to improve
BPSO’s performance, none of them has been proven to be
a promissing alternative. In this paper, we propose a novel
binary particle swarm optimization called Fitness Propor-
tionate Selection Based Binary Particle Swarm Optimiza-
tion(FPSBPSO). We test FPSBPSO’s performance in func-
tion optimization problems and multidimension knapsack
problems. Experimental results show that FPSBPSO can
find better optima than BPSO and a variation of BPSO.
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1. INTRODUCTION
Particle Swarm Optimization(PSO) [2] was originally de-

signed to solve continous optimization problems. In or-
der to deal with discrete problems, Kennedy and Eberhart
proposed binary particle swarm optimization(BPSO) [3] in
1997. BPSO has attracted much attention, however, most
researchers focused more on the application of BPSO rather
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than the analysis of BPSO. Although there are several im-
proved versions of BPSO, none of them has become a real
alternative to BPSO. The original BPSO model is used in
most publications reporting the application of PSO in deal-
ing with discrete problems.

There are severl problems with BPSO. Engelbrecht argue
that maybe inertial weights is useless in BPSO [1]. Khane-
sar discussed the memory problem and parameter selection
problem of BPSO in [4].

Our goal is to improve PSO’s performance in dealing with
discrete problems with a better interpretation than BPSO.
A new way to calculate velocities based on fitness values is
proposed and based on that we will propose a new binary
version of PSO named FPSBPSO.

2. NEW METHOD
We adopt fitness proportionate selection to update a par-

ticle’s position component, and that is why we call the new
model FPSBPSO. In the following content, when we refer to
involved particles in the folloing content, we actually mean
the three particles pi, pi’s personal best particle p

pb
i and pi’s

global best particle pgbi . The newly designed update formu-
las are as follows.

vt+1
id =


mr, if n0 == 0
1−mr, if n1 == 0

f1
f1 + f0

, otherwise.
(1)

xt+1
id =

{
0, rand < vt+1

id
1, otherwise.

(2)

Where n0 is the number of involved particles with xid = 0,
while n1 is the number of involved particles with xid = 1. f1
and f0 are computed as follows: First, involved particles are
divided into two sets S1 and S0 based on whether they select
1 or 0 at the dth bit. Then, f1 and f0 are calculated by aver-
aging the fitness values of particles in S1 and S0 respectively.
vt+1
id is the probability of setting xt+1

id to 0. The higher f1
is, the higher probability xt+1

id will be 0. It is obvious that
the formulas given above are for minimization problems and
can easily be modified to deal with maximization problems.

In this new model, the update formula for velocities is very
different from that of the BPSO. Parameters commonly used
in PSO models like inertial weight and Vmax are eliminated.
A new parameter mr is added and it is the only one free
parameter.
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Table 1: Dimension=5
Average Best Std

BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO

Ackley 5.10 4.00 ∗ 10−03 1.82 ∗ 10−10 2.73 1.00 ∗ 10−3 1.80 ∗ 10−10 1.01 0.00 0.00

Griewank 0.17 0.02 0.02 0.07 0.66 ∗ 10−06 0.0 0.05 0.01 0.01

Rastrigin 36.22 0.40 0.13 15.8 0.22 ∗ 10−03 0.0 9.07 0.60 0.35
Rosenbrock 816.46 28.04 52.56 39.65 0.67 1.35 641.61 104.39 138.77

Sphere 5.10 0.80 ∗ 10−5 1.00 ∗ 10−20 0.51 0.10 ∗ 10−06 1.00 ∗ 10−20 2.93 1.39 ∗ 10−5 0.00

Shifted Weierstrass 2.32 0.26 0.13 0.97 0.10 0.90 ∗ 10−04 0.38 0.13 0.10

Table 2: Dimension=10
Average Best Std

BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO

Ackley 15.65 1.57 4.82 ∗ 10−07 12.78 0.55 3.91 ∗ 10−08 1.03 0.47 6.78 ∗ 10−7

Griewank 1.03 0.18 0.09 0.76 0.07 4.44 ∗ 10−16 0.08 0.07 0.05

Rastrigin 41.04 27.78 3.97 190.63 12.40 2.52 ∗ 10−11 105.66 6.96 2.67

Rosenbrock 1.74 ∗ 106 259.52 133.17 1.44 ∗ 105 20.77 5.74 9.48 ∗ 105 461.81 416.69

Sphere 359.03 0.35 5.84 ∗ 10−13 149.28 0.09 1.67 ∗ 10−16 103.55 0.19 3.66 ∗ 10−12

Shifted Weierstrass 8.83 4.06 0.55 6.48 2.24 0.03 0.67 0.80 0.26

Table 3: Dimension=20
Average Best Std

BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO

Ackley 20.14 8.25 5 ∗ 10−03 18.02 10.35 0.16 ∗ 10−02 0.37 1.38 0.00

Griewank 1.81 1.03 0.060 1.50 0.99 5.16 ∗ 10−07 0.11 0.01 0.05
Rastrigin 3556.82 218.04 11.17 1852.17 313.40 32.86 464.50 48.06 9.06

Rosenbrock 1.17 ∗ 108 5 ∗ 105 570.64 4.18 ∗ 107 7.37 ∗ 104 16.31 2.99 ∗ 107 3.78 ∗ 105 1141.85

Sphere 3335.40 133.12 2.15 ∗ 10−05 2275.78 57.43 1.65 ∗ 10−06 426.08 42.88 2.32 ∗ 10−5

Shifted Weierstrass 23.79 17.68 2.70 20.30 14.00 1.13 0.98 1.43 0.77

Table 4: Dimension=30
Average Best Std

BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO BPSO NBPSO FPSBPSO
Ackley 20.82 17.23 0.41 20.19 14.39 0.10 0.10 1.35 1.43

Griewank 2.88 1.30 0.03 2.52 1.14 6.67 ∗ 10−04 0.18 0.08 0.03
Rastrigin 8004.77 1493.37 69.88 5796.02 646.46 22.34 671.97 280.06 16.96

Rosenbrock 4.56 ∗ 108 2.66 ∗ 107 707.43 2.42 ∗ 108 8.50 ∗ 1006 30.61 8.47 ∗ 107 1.05 ∗ 107 1045.43

Sphere 7573.83 1225.85 0.02 4606.81 606.48 4 ∗ 10−03 850.31 320.48 0.02
Shifted Weierstrass 40.19 33.15 6.80 34.37 28.17 4.48 1.27 1.84 1.23

Table 5: Student T-test Results
Dim=5 Dim=10 Dim=20 Dim=30

BPSO NBPSO BPSO NBPSO BPSO NBPSO BPSO NBPSO

Ackley 1.56 ∗ 10−72 1.40 ∗ 10−35 2.35 ∗ 10−119 1.59 ∗ 10−56 3.72 ∗ 10−174 5.86 ∗ 10−89 4.59 ∗ 10−117 1.35 ∗ 10−158

Griewank 2.80 ∗ 10−54 0.87 4.26 ∗ 10−144 6.11 ∗ 10−25 4.85 ∗ 10−151 1.39 ∗ 10−153 1.41 ∗ 10−126 2.27 ∗ 10−144

Rastrigin 8.27 ∗ 10−63 0.10 ∗ 10−2 4.89 ∗ 10−67 9.83 ∗ 10−63 1.43 ∗ 10−89 1.19 ∗ 10−81 1.97 ∗ 10−108 4.89 ∗ 10−73

Rosenbrock 8.64 ∗ 10−21 0.16 1.12 ∗ 10−33 0.04 3.62 ∗ 10−62 1.29 ∗ 10−24 3.64 ∗ 10−75 6.97 ∗ 10−45

Sphere 6.33 ∗ 10−32 4.37 ∗ 10−9 3.51 ∗ 10−57 2.21 ∗ 10−34 7.48 ∗ 10−91 7.88 ∗ 10−53 2.51 ∗ 10−96 4.10 ∗ 10−61

Shifted Weierstrass 3.54 ∗ 10−84 4.02 ∗ 10−15 3.20 ∗ 10−132 4.80 ∗ 10−73 7.58 ∗ 10−207 3.05 ∗ 10−135 3.50 ∗ 10−225 1.28 ∗ 10−167

3. EXPERIMENTS
In order to evaluate FPSBPSO’s performance, we tested

FPSBPSO on two kinds of problems: function optimization
problem and Multidimension knapsack problem(MKP). We
compare FPSBPSO’s results with the basic BPSO’s results
and NBPSO’s results [4]. The fitness function we used in
MKP was proposed by Khuri et al. in [5].
Experimental results are shown in six tables. From Table

1 to Table 5 are results obtained on function optimization
problems while Table 7 gives results on MKP. Table 6 gives
the MKP description.

Table 6: MKP Benchmark
n m Best Known n m Best Known

1 6 10 3800 5 28 10 12400
2 10 10 8706.1 6 39 5 10618
3 15 10 4015 7 50 5 16537
4 20 10 6120

Table 7: MKP Results
BPSO NBPSO FPSBPSO

Best Avg. Best Avg. Best Avg.
1 3800 3800 3800 3800 3800 3800
2 8706.1 8706.1 8706.1 8632.26 8706.1 8706.1
3 4015 4014.5 4015 4014.5 4015 4014.5
4 6120 6107.5 6120 6114.5 6120 6117.5
5 12380 12298.5 12400 12387 12400 12386.5
6 10490 10431.3 10618 10560.25 10618 10564
7 16217 16150.55 16519 16430 16537 16481

4. CONCLUSIONS
In this paper, we redefined the velocity component and

proposed a new BPSO model. The new model is very simple
with only one free parameter. Experimental results show

that the new model is superior to BPSO, especially when
the dimensionality of the optimization problem is high.
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