
A Novel Genetic Algorithm Based on Partitioning
for Large-Scale Network Design Problems

Xiao-Ma Huang a, Yue-Jiao Gong a, Jing-Jing Li b (Corresponding Author) and Xiao-Min Hu c
a Department of Computer Science, Sun Yat-sen University

a Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education
a Key Laboratory of Software Technology, Education Department of Guangdong Province

b School of Computer Science, South China Normal University
c School of Public Health, Sun Yat-sen University, P.R. China

jingjing.li1124@gmail.com

ABSTRACT
Network design is a broad class of essential engineering and
science problems. The target of network design is to construct a
graph that satisfies some restrictions. Many network design
problems (NDPs) are known as NP-hard and become more
challenging as networks grow fast in size. In this paper, we
propose a novel genetic algorithm based on partitioning, termed
PGA, which divides large-scale NDPs into low dimensional sub-
problems and achieves global optimal solution by coordination of
sub-problems. Experiments with PGA applied to the degree-
constrained minimum spanning tree problem have shown the
effectiveness of PGA for large-scale NDPs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods

Keywords
Network design; genetic algorithm; degree-constrained minimum
spanning tree problem; problem decoupling; co-evolution

1. INTRODUCTION
With the rapid development of electronic and information
technology, the size of networks and the complexity of Network
Design Problems (NDPs) become enormous. The expansion of the
search space of such large-scale NDPs makes it difficult for
traditional Evolutionary Algorithms (EAs) to find satisfactory
solutions in reasonable computational time.

To meet this challenge, this paper proposes a novel problem
decoupling approach, termed Partitioning-based Genetic
Algorithm (PGA) to tackle large-scale NDPs. By partitioning
method, a given NDP is usually decomposed into several sub-
problems by breaking the original network into small partitions.
Then an optimization algorithm such as Genetic Algorithm (GA)
is applied to each sub-problems independently. At the last stage,
the solution of the original problem is obtained by merging the
individual sub-solutions. In some cases, this approach show great
advantages in solving high-dimensional problems. On one hand,
the complexity of the problem is reduced dramatically. On the
other, the total computational time can be decreased significantly
if the optimization tasks of the sub-problems are dispatched to
different processors. However, for most complex NDPs, after

partitioning, one sub-network may have an implicit impact on
another during the evolution. In this case, the accuracy loss of the
result may occur if simply uniting the sub-networks which are
optimized separately.

To overcome this shortcoming of partitioning method for large-
scale NDPs, a scheme of co-evolution [1] may help. In the co-
evolution scheme, a local evolutionary search in the subspace is
performed on each processor and an infrequent inter-
communication between subspaces is accessed. By the
cooperative search of subspaces, the global optimal solution is
found in the end.

2. ALGORITHM
The algorithm first runs a clustering algorithm to decompose the
whole network into small partitions. Then a optimization
algorithm is carried out to evolve these partitions of small sub-
networks. The optimization of each sub-network uses the
framework of a generic genetic algorithm employing the edge-set
representation (GAES) [2]. During the optimization of each sub-
network, the algorithm employs a co-evolution scheme to tune the
evolution tendency of each sub-component by inter-
communication. The global optimal solution is finally achieved
by co-evolution of the sub-problems.

2.1 Network Partitioning
As for large-scale NDPs, it is promising to optimize the problem
decoupled by using clustering-based partitioning methods.
Clustering of the nodes in a network can discover structure and
recover natural groups of nodes, dividing the network into several
partitions. Nodes in the same partition are often closer than those
in different partitions. That means nodes in different partitions
may have weaker inherent interactions, which makes the
algorithm effective to find good solutions of the entire problem by
optimizing each sub-problem.

Given a network with weights on each edge between nodes, the
algorithm uses k-medoid clustering [3] to accomplish the network
partitioning process, generating k sub-networks with closest nodes
in them.

2.2 Sub-network Optimization
After the network partitioning process, the entire network is
divided into k disjoint sub-networks. Each of the sub-networks is
then optimized using the framework of a generic genetic
algorithm employing the edge-set representation (GAES) [2]. For
each sub-problem, a GAES is carried out on a processor to evolve

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the owner/author(s). Copyright is held
by the author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598431

111

the sub-network. During the optimization process, each GAES
keeps a population of NP potential solutions of the sub-problem.

2.3 Co-evolution
As is mentioned before, the evolvement of one partition may have
reliance on others. Even if each sub-network is perfectly
optimized and reaches an optimal sub-solution, it may lead to bad
network design (with a large total cost) as a whole by simply
jointing these optimized sub-components.

In this case, the PGA introduces a co-evolution scheme to achieve
the global optimal solution of the entire problem. As a sub-
network evolves itself by iterative reproduction and selection
process, it interacts with other sub-networks at intervals of p
generations. By interaction with each other, the sub-networks can
tune their evolution tendency to avoid local optima of the whole
NDP. The interaction can be done by applying random spanning

tree algorithm to the graph),(
1

entire

k

i

subimerge TTVG

 ,

where entireT is the edge set of the spanning tree of the entire

network and subiT is the edge set of the spanning tree of the ith

sub-network.

3. EXPERIMENTS AND COMPARISONS
Experiments are carried out to test the proposed PGA on twelve
hard dc-MSTP instances [4] with degree constraint d=5. The
proposed PGA was compared with the genetic algorithm using the
edge-set representation (GAES) proposed in [2], which does not
apply network partitioning method. Both of PGA and GAES use
pc=0.8 and pm=0.8. For GAES, the population size NP=100,
whereas for PGA, the number of sub-populations k is set to be 4
empirically and the size of each sub-population NSP=20, the
inter-communication interval p=20. Each case is executed
independently 30 times with maximum number of function
evaluations NFEs=10000.

We can see from the table clearly that PGA makes significant
improvement in GA for large instances. It is because the network
partitioning method divide the high-dimensional NDP into several
low-dimensional problems, which decreases the complexity of the
original problem and local optimization of sub-networks
accelerates the convergence. In this way, the efficiency of the
algorithm for complex NDP is improved.

To do a more extensive analysis, an extensive experiment on the
M-graph instance m500n1 is carried out. From Figure 1, we can
see that with k increasing, the problem is divided into sub-
problems with lower dimension and needs less consuming time.
However, shortening total executive time is at the cost of more
processors. Moreover, a bigger k doesn’t mean better solutions.
Although partitioning method can decrease the complexity of the
problem and result in faster convergence, yet too many partitions
will weaken the global exploration of the algorithm.

4. CONCLUSION
This paper proposes a novel genetic algorithm based on
partitioning for large-scale network design problems. The
algorithm uses a clustering algorithm to decompose the total NDP
into several small cooperative sub-problems. It then introduces a
co-evolution scheme to tune the evolution tendency of each sub-
component by inter-communication during the sub-network
optimization process. By coordination of each sub-component,
fairly good global solutions of large-scale NDPs can be achieved.
Experiments are carried out to compare the proposed PGA with
the original GA. The experiment results show that the proposed
network partitioning method improves the efficiency and makes
an improvement in the performance of GA for large-scale
complex NDPs.

5. ACKNOWLEDGMENTS
This work was supported in part by the NSFC No.61379061,
No.61309003, No.61202130, and No.61379060, in part by NSFC
Joint Fund with Guangdong under Key Projects U1201258 and
U1135005.

6. REFERENCES
[1] R.Subbu and A. C. Sanderson, “Modeling and convergence analysis

of distributedcoevolutionaryalgorithms,”IEEE Transactions on
Systems, Man, and Cybernetics – Part B: Cybernetics, vol. 34, no. 2,
pp. 806-822, Apr. 2004.

[2] G. R. Raidl, and B. A. Julstrom, “Edge sets: an effective
evolutionary encoding of spanning trees,” IEEE Trans. Evol.
Comput., vol. 7, no. 3, pp. 225-239, June 2003.

[3] C.B. Lucasius, A.D. Dane and G. Kateman, “On k-medoid clustering
of large data sets with the aid of a genetic algorithm: background,
feasibility and comparison,” Analytical Chimica Acta, vol. 282, no.3,
pp. 647-669, 1993.

[4] J. Knowles, and D. Corne, “A new evolutionary approach to the
degree-constrained minimum spanning tree problem,” IEEE Trans.
Evol. Comput., vol. 4, no. 2, pp. 125-134, July 2000.

Table 1. Best Gap and mean Gap of solutions of GAES and PGA

 GAES PGA

instance
name

Copt Gapbest

(%)
Gapavg

(%)
Gapbest

(%)
Gapavg

(%)
m050n1 6.60 2.46 7.40 1.98 6.43
m050n2 5.78 2.67 9.19 2.64 7.53
m050n3 5.50 0.20 2.91 0.70 4.62
m100n1 11.08 7.46 13.23 1.46 6.06
m100n2 11.33 9.56 15.21 4.00 7.81
m100n3 10.19 13.37 17.76 3.54 8.40
m200n1 18.33 27.17 30.65 5.50 8.89
m200n2 19.16 27.98 35.69 8.29 12.21
m200n3 16.13 28.55 31.52 4.72 7.59
m300n1 40.69* 17.92 19.38 8.90 10.47
m400n1 54.69* 27.47 29.28 16.65 18.32
m500n1 79.34* 24.85 25.66 17.00 18.48

0 2 4 6 8 10
0

5

10

15

20

25

0

5

10

15

20

25

 time
 Gap

ti
m

e(
s)

G
ap

av
g(%

)

k

Figure 1. Gapavg and average time of PGA on m500n1
with different number of sub-populations

112

