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ABSTRACT 
Network design is a broad class of essential engineering and 
science problems. The target of network design is to construct a 
graph that satisfies some restrictions. Many network design 
problems (NDPs) are known as NP-hard and become more 
challenging as networks grow fast in size. In this paper, we 
propose a novel genetic algorithm based on partitioning, termed 
PGA, which divides large-scale NDPs into low dimensional sub-
problems and achieves global optimal solution by coordination of 
sub-problems. Experiments with PGA applied to the degree-
constrained minimum spanning tree problem have shown the 
effectiveness of PGA for large-scale NDPs.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods 
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1. INTRODUCTION 
With the rapid development of electronic and information 
technology, the size of networks and the complexity of Network 
Design Problems (NDPs) become enormous. The expansion of the 
search space of such large-scale NDPs makes it difficult for 
traditional Evolutionary Algorithms (EAs) to find satisfactory 
solutions in reasonable computational time. 

To meet this challenge, this paper proposes a novel problem 
decoupling approach, termed Partitioning-based Genetic 
Algorithm (PGA) to tackle large-scale NDPs. By partitioning 
method, a given NDP is usually decomposed into several sub-
problems by breaking the original network into small partitions. 
Then an optimization algorithm such as Genetic Algorithm (GA) 
is applied to each sub-problems independently. At the last stage, 
the solution of the original problem is obtained by merging the 
individual sub-solutions. In some cases, this approach show great 
advantages in solving high-dimensional problems. On one hand, 
the complexity of the problem is reduced dramatically. On the 
other, the total computational time can be decreased significantly 
if the optimization tasks of the sub-problems are dispatched to 
different processors. However, for most complex NDPs, after 

partitioning, one sub-network may have an implicit impact on 
another during the evolution. In this case, the accuracy loss of the 
result may occur if simply uniting the sub-networks which are 
optimized separately. 

To overcome this shortcoming of partitioning method for large-
scale NDPs, a scheme of co-evolution [1] may help. In the co-
evolution scheme, a local evolutionary search in the subspace is 
performed on each processor and an infrequent inter-
communication between subspaces is accessed. By the 
cooperative search of subspaces, the global optimal solution is 
found in the end. 

2. ALGORITHM 
The algorithm first runs a clustering algorithm to decompose the 
whole network into small partitions. Then a optimization 
algorithm is carried out to evolve these partitions of small sub-
networks. The optimization of each sub-network uses the 
framework of a generic genetic algorithm employing the edge-set 
representation (GAES) [2]. During the optimization of each sub-
network, the algorithm employs a co-evolution scheme to tune the 
evolution tendency of each sub-component by inter-
communication. The global optimal solution is finally achieved 
by co-evolution of the sub-problems. 

2.1 Network Partitioning 
As for large-scale NDPs, it is promising to optimize the problem 
decoupled by using clustering-based partitioning methods. 
Clustering of the nodes in a network can discover structure and 
recover natural groups of nodes, dividing the network into several 
partitions. Nodes in the same partition are often closer than those 
in different partitions. That means nodes in different partitions 
may have weaker inherent interactions, which makes the 
algorithm effective to find good solutions of the entire problem by 
optimizing each sub-problem. 

Given a network with weights on each edge between nodes, the 
algorithm uses k-medoid clustering [3] to accomplish the network 
partitioning process, generating k sub-networks with closest nodes 
in them.  

2.2 Sub-network Optimization 
After the network partitioning process, the entire network is 
divided into k disjoint sub-networks. Each of the sub-networks is 
then optimized using the framework of a generic genetic 
algorithm employing the edge-set representation (GAES) [2]. For 
each sub-problem, a GAES is carried out on a processor to evolve 
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the sub-network. During the optimization process, each GAES 
keeps a population of NP potential solutions of the sub-problem.  

2.3 Co-evolution 
As is mentioned before, the evolvement of one partition may have 
reliance on others. Even if each sub-network is perfectly 
optimized and reaches an optimal sub-solution, it may lead to bad 
network design (with a large total cost) as a whole by simply 
jointing these optimized sub-components. 

In this case, the PGA introduces a co-evolution scheme to achieve 
the global optimal solution of the entire problem. As a sub-
network evolves itself by iterative reproduction and selection 
process, it interacts with other sub-networks at intervals of p 
generations. By interaction with each other, the sub-networks can 
tune their evolution tendency to avoid local optima of the whole 
NDP. The interaction can be done by applying random spanning 

tree algorithm to the graph ),(
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where entireT  is the edge set of the spanning tree of the entire 

network and subiT  is the edge set of the spanning tree of the ith 

sub-network.  

3. EXPERIMENTS AND COMPARISONS 
Experiments are carried out to test the proposed PGA on twelve 
hard dc-MSTP instances [4] with degree constraint d=5. The 
proposed PGA was compared with the genetic algorithm using the 
edge-set representation (GAES) proposed in [2], which does not 
apply network partitioning method. Both of PGA and GAES use 
pc=0.8 and pm=0.8. For GAES, the population size NP=100, 
whereas for PGA, the number of sub-populations k is set to be 4 
empirically and the size of each sub-population NSP=20, the 
inter-communication interval p=20. Each case is executed 
independently 30 times with maximum number of function 
evaluations NFEs=10000.  

We can see from the table clearly that PGA makes significant 
improvement in GA for large instances. It is because the network 
partitioning method divide the high-dimensional NDP into several 
low-dimensional problems, which decreases the complexity of the 
original problem and local optimization of sub-networks 
accelerates the convergence. In this way, the efficiency of the 
algorithm for complex NDP is improved.  

To do a more extensive analysis, an extensive experiment on the 
M-graph instance m500n1 is carried out. From Figure 1, we can 
see that with k increasing, the problem is divided into sub-
problems with lower dimension and needs less consuming time. 
However, shortening total executive time is at the cost of more 
processors. Moreover, a bigger k doesn’t mean better solutions. 
Although partitioning method can decrease the complexity of the 
problem and result in faster convergence, yet too many partitions 
will weaken the global exploration of the algorithm. 

4. CONCLUSION 
This paper proposes a novel genetic algorithm based on 
partitioning for large-scale network design problems. The 
algorithm uses a clustering algorithm to decompose the total NDP 
into several small cooperative sub-problems. It then introduces a 
co-evolution scheme to tune the evolution tendency of each sub-
component by inter-communication during the sub-network 
optimization process. By coordination of each sub-component, 
fairly good global solutions of large-scale NDPs can be achieved. 
Experiments are carried out to compare the proposed PGA with 
the original GA. The experiment results show that the proposed 
network partitioning method improves the efficiency and makes 
an improvement in the performance of GA for large-scale 
complex NDPs. 
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Table 1. Best Gap and mean Gap of solutions of GAES and PGA 

 GAES PGA 

instance 
name 

Copt Gapbest 

(%) 
Gapavg 

(%) 
Gapbest 

(%) 
Gapavg 

(%) 
m050n1 6.60 2.46 7.40 1.98 6.43 
m050n2 5.78 2.67 9.19 2.64 7.53 
m050n3 5.50 0.20 2.91 0.70 4.62 
m100n1 11.08 7.46 13.23 1.46 6.06 
m100n2 11.33 9.56 15.21 4.00 7.81 
m100n3 10.19 13.37 17.76 3.54 8.40 
m200n1 18.33 27.17 30.65 5.50 8.89 
m200n2 19.16 27.98 35.69 8.29 12.21 
m200n3 16.13 28.55 31.52 4.72 7.59 
m300n1 40.69* 17.92 19.38 8.90 10.47 
m400n1 54.69* 27.47 29.28 16.65 18.32 
m500n1 79.34* 24.85 25.66 17.00 18.48 
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Figure 1. Gapavg and average time of PGA on m500n1 
with different number of sub-populations 
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