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ABSTRACT
The behaviors of populations in evolutionary algorithms can
be understood in terms of the dynamics of network models
whose nodes represent individuals in the population. This
paper explores “ancestral networks” in which connections in-
dicate the proximity of the nearest common ancestor of two
nodes. Preliminary experimental results show that the for-
mation of large components in such an ancestral network
model can be used to identify potential convergence, and
to determine when randomly reseeding part of a population
can prove beneficial.

Categories and Subject Descriptors: G.2.2 [Graph The-
ory]: Network problems; I.2.6[Learning]: Knowledge Acqui-
sition; I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms: Network Science Applications, Evolution-
ary Algorithms

Keywords: Genetic Algorithms, Network Science, Ances-
tral Networks, Convergence Detection, Reseeding

1. INTRODUCTION
Ideas borrowed from observing various biological species

serve to study the growth of a species from its infancy to
maturity as a community or communities. The natural be-
havior of most species in the biosphere is to form cohesive
communities (or networks) for survival and growth, and a
deeper understanding of such evolutionary systems can be
greatly enhanced by the study of networks.

Genetic Algorithms [1] traditionally use strict convergence
criteria based on properties of the best point or the mean
of the entire population. We use the formation of a large
component in the network space to detect impending conver-
gence of the GA. The corresponding criterion in the networks
domain is triggered much more quickly than population-
based statistics, i.e., the formation of a large component
is much more easily observed and quicker than measuring
minute changes in best/mean function values. The largest
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Figure 1: Edges in the next generation, based on
parents in the previous generation

component is likely to contain the best individual as well as
many other points which are also significantly high quality
individuals.

2. ANCESTRAL NETWORKS
We define an ancestral network, G =< V,E > as follows:

• V : All n individuals in the population are vertices.

• E: Two individuals have an edge between them if they
share at least one parent.

This is similar to the ancestral network defined in [4], which
considers the network at multiple parent levels and studies
genetic drift. Here, our focus is on convergence detection.
One advantage of defining a network of this form is that the
edges are “hard”, i.e. we do not require any additional infor-
mation or need to set thresholds (e.g., based on Euclidean
networks [2]), since the ancestral connections are very clear
and these are the processes which led to the formation of the
next generation. An example of the existence of edges based
on parents in the previous generation is shown in Figure 1.

The motivation to use a network such as this is that two
nodes will share a link because they are likely to contain
some common genetic material. Common genetic mate-
rial would imply a form of “similarity” amongst individuals
which we exploit by creating an edge and observing forma-
tions of components. Arguably, many “similar” individuals
would imply the identification of a region of interest, which
in the problem at hand would be the possible location of the
global optimum. We show empirical evidence of the above
hypotheses in the next sections.

3. RESEEDING ALGORITHM
We describe the algorithm below. This algorithm takes

into account component formation, identification of the time
instant when convergence is likely to occur, reseeding a frac-
tion to continue exploring, and retaining the rest. We dis-
cuss the results of running this algorithm in the next section.
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Algorithm 1 A Reseeding Policy Based on Early Detection
of Convergence

Initialize the population of size n
α← Threshold fraction of population in order to identify
a large component;
repeat Perform recombinations and mutations to obtain
next generation of GA

if number of individuals in the largest component ≥
α.n (i.e., a likely convergence zone) then

Reseed a fraction, β, of the population in the search
space and include them in the mating pool.

Retain the remaining representative fraction, (1−
β) of the component

end if
until Convergence criteria are met.

4. RESULTS
We pick a well-known difficult benchmark problem, min-

imizing the Schwefel function [3], which has distant local
optima. We tested our approach by experimenting with
various population sizes, different dimensions (or number
of variables), and different values of representative fractions
to retain and reseed.

Figure 2: Function values for various dimensions,
and parameters α and β, averaged over 30 runs.

We record and examine the results of running GA sim-
ulations at various generations and the results are shown
in Table 1, depicting function values late in evolution, i.e.
Generation 90, at around the point of convergence. A plot
showing the above for a population size of 50 is also shown in
Figure 2. Comparing the original GA performances against
the modified versions as seen in Table 1 as well, the algo-
rithm shows improvements in terms of better (lower) func-
tion values (since we are minimizing), with occasional ex-
ceptions. High values of standard deviation occur because
there are significant numbers of optimally converged values
as well as a significant number of premature convergences.
In this scenario, a better mean implies having better func-
tion values as well as the fact that the algorithm got trapped
fewer times (in most cases due to the reseeding).

In order to highlight the effects of reseeding based on
emergence of components, we also reseed at predetermined
instants (labeled ‘Reseed 50 gens’) at every 50th generation.

Table 1: Results: Function values for different di-
mensions and population sizes, at Generation 90.
Best values in bold. Average of 30 runs.

Dim Pop size Original
GA

Reseed 50
gens

Alpha=0.7,
Beta=0.3

2 50 15.43 23.34 4.45
3 50 200.06 163.75 137.46
4 50 251.94 184.94 171.86
5 50 402.59 291.1 260.98
6 50 417.84 360.65 331.23
7 50 496.65 529.72 493.43

2 100 2.6E-05 4.19 2.6E-05
3 100 113.62 77.18 71.98
4 100 117.02 106.19 76.25
5 100 142.46 121.59 131.03
6 100 225.24 194.39 171.64
7 100 291.71 237.16 278.23

2 150 2.6E-05 2.6E-05 2.6E-05
3 150 65.97 55.29 45.14
4 150 71.36 87.76 46.32
5 150 113.93 104.55 82.25

] 6 150 94.24 128.23 119.18
7 150 166.95 159.59 133.77

In a few instances, unmodified GA is better, arguably be-
cause the reseeding was too aggressive when a very good
solution was already achieved.

From the point of view of time complexity, there is a little
overhead due to the reseeds, when compared with the pre-
determined reseeding option. A single predetermined run
for n = 2, population size= 50 took 1.63 seconds whereas
with the component occurrence based reseeding took 1.80
seconds, for an overhead of 10.4% which is the time taken
to perform the extra reseeds.

5. CONCLUSIONS AND FUTURE WORK
The proposed approach reduces the number of individuals

during the exploitation phase to continue to explore, argu-
ing that we do not really need all the individuals to hover
close to each other and exploit, and that these resources are
perhaps better utilized by continuing to explore potentially
unexplored regions. This approach is especially helpful in
harder problem surfaces, because more exploration usually
implies a less likelihood of premature convergence. We also
hypothesize that different kinds of similarities can result in
identification of regions of interest in a similar way. We are
also in the process of examining other kinds of EAs such as
PSOs to study if they demonstrate similar behavior.
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