
Assessing Different Architectures for Evolutionary
Algorithms in JavaScript

Juan-Julián Merelo,
Pedro Castillo,
Antonio Mora

GeNeura, ETSIIT + CITIC, U.
Granada

jmerelo,pedro,amorag@geneura.ugr.es

Anna I. Esparcia-Alcázar
S2 Grupo

aesparcia@s2grupo.es

Víctor M. Rivas-Santos
Universidad de Jaén
vrivas@ujaen.es

ABSTRACT
JavaScript (JS) is nowadays the only language that can be
used to develop web-based client-server applications in both
tiers, client and server. This makes it an interesting choice
for developing distributed evolutionary computation experi-
ments, but the best way from algorithmic and practical point
of views is not clear, so we will compare different distributed
EC architectures in JavaScript using NodEO, an open source
JS framework released by us.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
JavaScript; node.js; parallel evolutionary algorithms; asyn-
chronous evolution

1. INTRODUCTION
node.js, which is sometimes calles simply Node, is a JS in-

terpreter whose default input/output mode is asynchronous.
In the context of a distributed evolutionary algorithm using
migration, this means that when performing network oper-
ations like migration, we do not know when it will even-
tually finish or even if it will be performed in the exact
sequence we called them. This implies a change in the
evolutionary algorithm whose impact in performance will
have to be evaluated. This will happen across different
distributed evolutionary algorithm architectures, but they
will be impacted in a different way. In this paper we will
check the increasingly popular peer to peer distributed EA
architecture along the more classical client-server architec-
ture. We will do it using the NodEO open source evolu-
tionary algorithm library written in Node [2], which is avail-
able in any node instance via the Node Package Manager

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598460.

at https://npmjs.org/package/nodeo with a GPL license
and whose development is open at GitHub. This library
will use the express.js server and restler client modules
to implement network operations using REST commands.

The function chosen for doing all the experiments is a
classical deceptive function called Trap [1]:

T (x) =

{
a ∗ (z − x)/z if x <= z

b ∗ (x− z)/(l − z) if x > z

where x is the number of ones in the block, l is the length
of the block, and a and b are two constants that meet the
condition a < b. In this experiment we will use z = 3, a =
1, b = 2.

After some initial experiments to find the population size
we will test two different architectures: P2P in which every
node (which we will call process from now on, since they are
implemented as such and to avoid confusion with node.js,
the JS interpreter) communicates with the rest and needs
to know the directions of the other nodes to interchange in-
formation, which is done through HTTP PUT requests; and
pool-based where communication of one client with other is
only done through the server, with each program acting in-
dependently and knowing only about this server. This makes
easy to add new clients, but also turns the single server into
a possible bottleneck.

Some initial tests changing the generation gap (or migra-
tion rate) shows that waiting for 20 generations before mi-
gration is a reasonable quantity, and it will the one used
in the experiments. Besides, we have tested up to 16 pro-
cesses in a single machine with no noticeable degradation in
performance.

However, this programming effort can be used in a differ-
ent direction, and that is what we have attempted with the
pool architecture, with clients all working against a single
server. In principle we wanted to test the same architecture
with the same generational gap, that is, total population for
all nodes equal to 512, with this population divided among
processes. However, since all the requests are done to a sin-
gle process its event queue saturates very fast which led us
to increase the generational gap with the number of pro-
cesses; even so, it brings errors which crash the clients in
some cases.

In general and from the point of view of the operating
system load, no great change is observed with the addition
of one process (n client processes + server) to the pool; if
there is any difference in time, it should not be attributed to
increased OS load or, for that matter, to the small changes

119



Figure 1: Average time, in milliseconds, for suc-
cessful runs. Black, solid represents the previously
mentioned P2P architecture, while the light, dashed
line represents the pool-based, single-server archi-
tecture.

in the application architecture done. Even if the P2P appli-
cations do a single request (a GET) and this one performs
two (first a PUT and then a GET), it probably cancels out
with the fact that the P2P processes must also respond to
requests from time to time. In fact, what we observe in the
comparison of both types of architectures in Figure 1 is that
there is a difference for the smallest number of processes
and the biggest number of processes but they go in differ-
ent directions, so it is difficult to say if, in general, there is
any difference (there is none for p = 64, 128) and what is its
origin.

But a more dramatic change of scenario is shown in Figure
2, which shows that the success rate is noticeably higher for
the pool-based architecture, although decreasingly so with
the increasing population; this is only to be expected since,
in fact, success rate increased with the population in the P2P
architecture. This makes this pool-based architecture from
the algorithmic point of view, the best alternative. Besides,
they are not mutually exclusive.

This conclusion is reached on top of having proved (yet
again, some might say) that JavaScript, its implementation
in node.js, and the simple library called NodEO we are pre-
senting in this paper, are valid platforms for performing dis-
tributed computation experiments, since they allow to cre-
ate rapid prototypes to concentrate on system architecture
and the solution of problems via evolutionary algorithms. In
an unconstrained environment, JavaScript will probably be
slower than Java or C++, although its speed is on par with
other scripting languages like Ruby. However, in an envi-
ronment such as a multi-tier architecture that includes rich
Internet applications (with an UI written in JavaScript in
the browser) or even mobile applications (which can easily
be done in JavaScript via the PhoneGap framework or sim-
ply HTML5 in any browser) JavaScript can offer an excellent

Figure 2: Number of successful runs out of 30.
Black, solid line corresponds to the P2P architec-
ture, light-colored, dashed corresponds to the single-
server architecture (pool).

performance and even algorithmic advantages in distributed
evolutionary algorithms, as proved here.

2. CONCLUSIONS
In this paper we have proved the validity and performance

node.js-based distributed evolutionary algorithm by using
a standard module, NodEO. node.js is better known in
development and open source circles than in the scientific
community, so our intention was to introduce it to the evo-
lutionary computation (EC) community by proving its value
as a platform for EC experiments. A basic EC library has
been created and released, so it is available to the researches.
The library can be expanded and, being open source, can be
adapted and suited to the needs of any particular user; due
to the expansion of the JavaScript and node.js commu-
nity, it should be increasingly easy to find people interested
and skilled enough to work in evolutionary algorithms using
JavaScript and node.js, and, from the other end, it could
get the node.js community interested in our area, which
might prove the source of interesting problems that can be
dealt with from the point of view of metaheuristics.

3. ACKNOWLEDGMENTS
Funded by CEI-BioTIC grant CANUBE (CEI2013-P-14)

and ANYSELF project (TIN2011-28627-C04-02).

4. REFERENCES
[1] D. H. Ackley. A connectionist machine for genetic

hillclimbing. Kluwer Academic Publishers, Norwell,
MA, USA, 1987.

[2] J. J. Merelo Guervós. NodEO, a evolutionary algorithm
library in Node. Technical report, GeNeura group, Mar.
2014. Available at
http://figshare.com/articles/nodeo/972892.

120




