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ABSTRACT
In differential evolution (DE), the optimal value of the con-
trol parameters are problem-dependent. Many improved DE
algorithms have been proposed with the aim of improving
the exploration ability by adaptively adjusting the values of
F . In those algorithms, although the value of F is adaptive
at the individual level or at the population level, the value
is the same for all dimensions of each individual. Individ-
uals are close to the global optimum at some dimensions,
but they may be far away from the global optimum at other
dimensions. This indicated that different values of F may
be needed for different dimensions. This paper proposed
an adaptive scheme for the parameter F at the dimensional
level. The scheme was incorporated into the jDE algorithm
and tested on a set of 25 scalable benchmark functions. The
results showed that the scheme improved the performance of
the jDE algorithm, particularly in comparisons with several
other peer algorithms on high-dimensional functions.

Categories and Subject Descriptors
G.1.6 [NUMERICAL ANALYSIS]: Optimization—glob-
al optimization, unconstrained optimization
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1. INTRODUCTION
Differential evolution (DE), introduced by Price and S-

torn [4], is a simple yet powerful evolutionary algorithm
(EA) for global optimization problems. DE creates a new
candidate solution by combining the information of a parent
individual and several other individuals of the population.
There are many different trial vector generation strategies
for DE, each of which seems to be suitable for some par-
ticular tasks or for solving a certain type of problems [2, 3].
There are three control parameters in DE: the amplifica-
tion factor of the difference vector—F , the crossover control
parameter—CR, and the population size—NP . Although
several adaptive DE algorithms have been proposed, they
are all at the population level or at the individual level, i.e.
for an individual, the values of F are the same for all di-
mensions. Individuals are close to the global optimum at
some dimensions, but they may be far away from the global
optimum at other dimensions. In general, in the case that
population converges to the global optimum, the distance
between an individual and the global optimum gradually
decreases to zero for all dimensions but in a chaotic way.
This suggests that using an adaptive F for each dimension
for an individual may improve the performance of DE algo-
rithms. This paper aims to address this issue based on a
case study of the jDE algorithm [1].

2. DIMENSIONAL-LEVEL ADAPTATION OF
F

In this section, we propose an adaptive scheme of F for
jDE at the dimensional level. To adjust the values of F at
different dimensions, the encoding for each individual in the
population is extended with a value of F at each dimen-
sion parameter (see Fig. 1). The mutation in the improved
algorithm Dim-jDE is changed as follows:

vi,G = xr1,G + Fi,G · (xr2,G − xr3,G), (1)

where Fi,G = {Fi,1,G, Fi,2,G, . . . , Fi,D,G}. In Eq. (1), for an
individual, the value of F of each dimension is independent.
For the mutant vector vi,G generated by Eq. (1), the range
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Table 1: b/n/w summarizes the statistical results: b, n, and w denote the number of functions for which Dim-jDE performs
significantly better, no significantly different and significantly worse than its peer, respectively.

D=50 D=100

jDE(NP=30) jDE(NP=100) DE/rand/1/bin jDE(NP=30) jDE(NP=200) DE/rand/1/bin

Dim-jDE 10/6/9 13/10/2 10/8/7 12/6/7 16/5/4 18/2/5

of vi,j,G is
[
xr1,j,G−Fi,j,G · |xr2,j,G−xr3,j,G|, xr1,j,G+Fi,j,G ·

|xr2,j,G−xr3,j,G|
]
, j = 1, 2, . . . , D. Therefore, if the values of

Fi,j,G, j = 1, 2, . . . , D, are different, the magnitude change
of xr1,j,G will be different with dimensions.

x1,2,Gx1,1,G x1,D,G CR1,G…

x2,2,Gx2,1,G x2,D,G CR2,G…

… … … … …

xNP,2,GxNP,1,G xNP,D,G CRNP,G…

…

…

…

…

F1,1,G

F2,1,G

…

FNP,1,G

F1,D,G

F2,D,G

…

FNP,D,G

Figure 1: The new individual encoding.

The new control parameter Fi,G+1 is adapted as follows:

Fi,G+1 =

{
F

′
i,G+1 if rand1 < τ1 (2a){
0.5, . . . , 0.5

}
otherwise (2b)

where

F
′
i,G+1 =

{
θj |θj = Fl + rand2 · Fu, j = 1, 2, . . . , D

}
, (3)

The methods of generating θ in Eq. (3) is the same as
jDE [1]. rand1, rand2 ∈ [0, 1], which are uniformly distribut-
ed random numbers. τ1 represents probabilities. Fl=0.1,
Fu=0.9 and τ1=0.1, which are the same values used as the
original jDE algorithm [1]. Eq. (3) improves the diversity
of F , which makes a DE algorithm too explorative. It will
slow down the convergence speed. To alleviate this issue, in
Eq. (2a), the values of F are adapted at the dimensional
level with a small probability.

3. EXPERIMENTAL STUDY
A set of 25 scalable benchmark functions for the competi-

tion on IEEE CEC05, are used with dimensionality of D=30
and D=50. For the 30-dimensional problems, there are 7
functions for which Dim-jDE archives the best error; while
there are 11 functions for which DE/rand/1/bin archives the
smallest error. From the statistical significant results (see
Table 1), we can see that Dim-jDE performs slightly better
than DE/rand/1/bin. Dim-jDE performs much better than
jDE with NP=100. Compared with jDE with NP=30, al-
though the initial population of Dim-jDE is the same as its,
Dim-jDE performs a little significantly better because of the
improved adaptation of F . For the 50-dimensions problems,
there are 10 functions for which Dim-jDE can get the best re-
sults. And Dim-jDE performs much significantly better than
DE/rand/1/bin and jDE with NP=200. This is because an
enlargement in population size causes an increase in the set
of potential ineffective moves [2]. For these high-dimensional
functions, compared with jDE with NP=30, Dim-jDE per-
forms significantly better. From the above results, we can

see that although the population size of Dim-jDE is small,
its performance is good, and we can conclude that the im-
proved adaptation of F can improve the performance of jDE
algorithm, especially for high-dimensional problems.

4. CONCLUSIONS
In this paper, we has studied the adaptation of F at the

dimension level, and proposed an improved scheme of adapt-
ing F . In the improved adaptation of F , each individual in
the population is extended with parameter values of F , and
the values of F are applied not only at the individual level
but also at the dimensional level. So the mutation operation
improves the explorative capability of an algorithm. The
improved adaptation is incorporated into the jDE algorithm
and is tested on a set of 25 scalable benchmark function-
s. The results show that the improved adaptation of F can
significantly improve the performance of the jDE algorithm.
Even if the population size of jDE is small, the improved
jDE algorithm also has a superior performance in compar-
isons with several other peer algorithms for high-dimensional
function optimization.
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