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ABSTRACT
Due to the increased quantity of digital data, especially in
the form of digital images, the need for effective image com-
pression techniques is greater than ever. The JPEG lossless
mode relies on predictive coding, in which accurate predic-
tive models are critical. This study presents an efficient
method of generating predictor models for input images via
genetic programming. It is shown to always produce error
images with entropy equal to or lower than those produced
by the JPEG lossless mode. This method is demonstrated
to have practical use as a real-time asymetric image com-
pression algorithm due to its ability to quickly and reliably
derive prediction models.

Categories and Subject Descriptors
I.4.2 [Image Processing and Computer Vision]: Com-
pression (Coding); I.2.m.c [Artificial Intelligence]: Method-
ologies—Evolutionary computing and genetic algorithms
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Genetic Programming; Image Compression

1. INTRODUCTION
Lossy image compression results in irreversible loss of im-

age data and can introduce visual artifacts. To remedy this,
lossless compression methods can be used. While a large
number of lossless techniques exist [1–4], there is significant
room for improvement in terms of compression performance.
Attempts at providing lossless compression via evolutionary
algorithms have proven unrealistic for real-time use and do
not provide strong compression ratio improvements [5, 6].

Predictive coding is a simple, yet effective lossless method
for reducing the entropy of an image. With lower entropy
levels, the encoded data is more easily compressed with an
entropy coder. Its main component, the predictive model,
uses the value of an individual pixel as compared to the val-
ues of its neighbors. The differences between the predicted
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pixel values and actual pixel values are stored in an error
image. If the prediction function is perfectly accurate, the
resulting error image will contain all zeroes, and only the
input image’s border pixels will need to be stored in order
to perfectly reconstruct the image. On the other hand, a
poor model will result in irregular patterns of high and low
pixel values resulting in high entropy, and thus, a lowered
ability to be compressed via an entropy encoder.

The JPEG lossless mode utilizes seven static prediction
functions [4]. During compression, the model that provides
the most accurate prediction is selected and used to encode
the image. Naturally, seven prediction models alone cannot
provide optimal predictions for the infinite range of possible
input images.

We propose a method of evolving nonlinear prediction
models in a practical way. The proposed method is demon-
strated to result in error images with an average 3.84% lower
entropy than the JPEG lossless mode, while at the same
time maintaining resource consumption and runtimes con-
sistent with that of conventional image compression tech-
niques. Empirical results show that the proposed method is
able to compress on the order of two seconds per image.

2. PROPOSED METHOD
The proposed method uses a population of candidate pre-

diction models. Each individual is initially seeded with one
of the seven JPEG lossless mode prediction functions. An
elitist selection scheme is used to guard against population
regression. Throughout generations, the population is main-
tainted at a constant size. Three types of mutations are
used: point, subtree insertion, and subtree deletion. Muta-
tions are introduced randomly during each generation. The
optimal mutation probability and population size was deter-
mined empirically to be 15% and 100, respectively.

The prediction models are represented as s-expressions,
where chains of operators and variables are fashioned as a
tree structure. The expression tree consists of a number of
functions and terminals. Each function describes an opera-
tion, and each terminal acts as a tree leaf, representing some
constant number. The proposed method uses the following
functions and terminals: addition, subtraction, multiplica-
tion, division, minimum/maximum, left pixel, top-left pixel,
top pixel, top-right pixel, and assorted constants (1, 2, 5,
10, 100).

Prediction model fitness is judged by the resulting error
image’s entropy of probability distribution. As shown in
Equation 1, the fitness value is scaled based on the worst-
case entropy level of the given image. The resulting fitness
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Table 1: Mutation probability versus percent en-
tropy reduction

Mutation probability Average entropy improvement
5% 2.43%
10% 3.67%
15% 3.84%
20% 3.58%
25% 3.53%
30% 3.04%

Table 2: Generations versus percent entropy reduc-
tion

Generations Average entropy improvement
50 3.84%
100 4.86%
200 5.08%
300 5.13%
500 5.21%

for the ith individual F (i) is higher for better performing
models, and lower for poorer models.

F (i) = 1−
−
∑

j pj log2pj

log2N
= 1− Entropy

WorstCaseEntropy
. (1)

Pb(i) =
i− 1

N − 1
. (2)

Using the raw fitness value, all individuals are ranked us-
ing a common linear ranking system. This scaling method is
demonstrated to perform better than other ranking systems
in terms of resilience to disruption [7]. Using normalized fit-
ness values, the ith individual’s probability of breeding Pb(i)
is calculated using the formula shown in Equation 2.

A major limiting factor in evolutionary based image com-
pression is speed [5], so the proposed method introduces
several performance enhancements. Parallelization was used
extensively during fitness evaluation. In practice, runtimes
were decreased by a factor of three using a four core com-
puter with multithreading. Error entropy is directly related
to compressed image size. Exploiting this relationship, fit-
ness is based on error image entropy rather than compressed
image size. This shortcut results in significant runtime re-
duction without affecting prediction model quality.

3. EXPERIMENTAL RESULTS
The proposed method was implemented as a C++ appli-

cation on a 3.3 GHz, four core processor. Grayscale images
were tested; it is a trivial extrension to apply this method
to color images.

Table 1 shows the average entropy reduction over the best
JPEG predictor. Various mutation probabilities were tested
on an ImageNet dataset consisting of 500 images. Popula-
tions ran for 50 generations each, with each population con-
sisting of 100 individuals. Runtimes averaged at 2.5 seconds
per image. It was found that a 15% mutation probability
provided the best entropy improvement, consistent with the
high mutation probabilities often used in image processing
applications.

In comparison, Table 2 shows average entropy improve-
ments for an increasing number of generations. All popula-

tions used the optimal 15% mutation probability shown in
Table 1. These results suggest that longer runtimes do im-
prove evolved prediction models However, populations last-
ing longer than 50 generations resulted in runtimes too long
to be considered practical. For example, a 100 generation
population resulted in runtimes averaging slighly more than
one minute per image.

From these results, it was concluded that the best popu-
lation parameters for real-time compression are 50 genera-
tions, 100 individuals, and 15% mutation probability. These
parameters result in an average 3.84% entropy reduction
over the best JPEG prediction model, while maintaining
average compression runtimes of 2.5 seconds.

4. CONCLUSIONS
Results from this study show that GP can be applied to

image compression in a real-time manner that competes with
conventional compression methods in terms of runtime and
compression ratio. Compression improvements are an aver-
age 3.84% better than the JPEG lossless mode. The pro-
posed method also has the benefit of being an asymmetric
compression algorithm.

While the results from this study are certainly encourag-
ing, there are still several points of interest that can be im-
proved. In particular, these findings suggest that the next
step is to apply similar evolutionary techniques to higher
order prediction models utilizing non-local pixels. Recent
work also suggests that deriving prediction models for im-
age subregions holds promise for higher compression ratios.
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