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ABSTRACT

The quality of candidate solutions in evolutionary computa-
tion (EC) depend on multiple independent runs and a large
number of them fail to guarantee optimal result. These runs
consume more or less equal or sometimes higher amount of
computational resources on par the runs that produce desir-
able results.

This research work addresses these two issues (run qual-
ity, execution time), Run Prediction Model (RPM), in which
undesirable quality evolutionary runs are identified to dis-
continue from their execution. An Ant Colony Optimization
(ACO) based classifier that learns to discover a prediction
model from the early generations of an EC run.

We consider Grammatical Evolution (GE) as our EC tech-
nique to apply RPM that is evaluated on four symbolic re-
gression problems. We establish that the RPM applied GE
produces a significant improvement in the success rate while
reducing the execution time.

Categories and Subject Descriptors
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1. INTRODUCTION

Achieving optimal solution quality is a serious concern for
the stochastic evolutionary algorithms (EAs) that require
multiple independent runs. For the computationally expen-
sive problems, the resources are better utilized if the EA
produces minimum number of poor solutions. For exam-
ple [7, 8] are more concerned about producing a single use-
ful solution than to make confirmations to mimic the same
result. The aim of this research is to offer a new mechanism
that helps GE to optimally utilize the available resources by
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predicting, there by culling the runs that tend to turnout
as poor solutions. An ACO [3] induced prediction model
is applied in devising the performance of a given GE run.
Further more, ACO discovered models are scrutinized that
improve the number of qualitative solutions while optimizing
the resource utilization.

2. PRELIMINARIES

GE is an EA that evolves computer programs in an ar-
bitrary language through Context Free Grammars (CFGs)
that are specified in Backus Naur Form (BNF). In general,
a number of solution quality improvements were proposed
in Genetic Programming (GP), of which, [4] is one such im-
portant GP based improvement on symbolic regression that
used interval arithmetic and linear scaling.

This study is more focused in employing an ACO based
classifier named cAntMinerpp [6] for performance predic-
tion of a GE run. It discovers a list of classification rules
with the help of an on-the-fly discretization procedure that
enhances the accuracy on numerical data. cAntMinerpp
takes the training data as an input and iteratively discovers
rules by building construction graphs that produce inter-
mediate rules, prunes these rules and removes all the data
points covered by these intermediate rules. This process is
repeated until all the data points in the input data set are
covered or a convergence criterion is met. A detailed de-
scription of these new classifiers can be found in the survey
shown in [5].

3. THE RUN PREDICTION MODEL
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Figure 1: A block diagram of the run prediction
model (RPM) applied GE.

The proposed run prediction model (RPM) follows the
traditional design of GE except for a small tweak at the run



execution level. Figure 1 shows the block diagram of RPM
applied GE. cAntMinerpp learns to discover a prediction
model from the training data. The model accepts the GE
evolutionary cycle as an input then, tries to identify the
quality attainable at the end. Depending upon the model
prediction, the runs that are predicted to be fruitless are
terminated that results in continuation of the fruitful runs.

The training set required for the classifier holds the data
that contains the respective changes in the parameters best
fitness (BFC), average fitness (AFC), average actual length
(AALC), average effective length (AELC) from generation
1 to 10.

4. EXPERIMENTS AND RESULTS

Our experiments are conducted in two sets on four sym-
bolic regression problems. In the first set, the cAntMinerpp
classifiers outperformed some state-of-the-art machine learn-
ing algorithms (C4.5, PART, JRip) in producing accurate
prediction models on training data. The data collected from
the experiments shown in [1] form the training data. The
cAntMinerpp parameters are set to default as proposed
in [6]. The classifier induces a list of classification rules that
are of the form IF BFC <= 0.0268 THEN no. The dis-
covered models are further analyzed to select the optimal
combination of rules from the list of rules that are finally
used to predict the solution quality of a given GE run.

In the second set of experiments, we compare the stan-
dard GE and, RPM applied GE on four symbolic regression
problems in terms of the number of fruitful runs. The exper-
imental parameters for GE: # of runs = 30, population size
= 200, # of generations = 120, crossover probability = 0.9
(used effective crossover specific to GE), mutation probability
= 0.01 (point mutation). randomly initialized the popula-
tion with a minimum genotype length = 15, mazimum geno-
type length = 25, seed is incremented in each iteration and,
steady state replacement strategy were used. An S-Lang
evaluator was used to evaluate the fitness of phenotype. We
used normalized fitness as our fitness measure.

Table 1: Experimental results of standard GE vs
RPM+GE over 30 runs.

GE RPM+GE

Problem fruitful fruitful culled

runs runs runs
fi=0+2)3 18 15 9
fo=at—ad -y —y 7 3 23
fa=a2—yP—y—= 6 5 9
fa = aV 518 12 13

Table 1 summarizes the standard GE results in compari-
son with the RPM applied GE across 30 independent runs.
The results also contain the information regarding the num-
ber of discontinued runs as a result of applying the new
technique. The proposed approach with Wilcoxon Signed
Rank tests shows a significant improvement in the number
of successful runs over standard GE at o = 0.05. f3 shows
a significantly small improvement in its results whereas the
remaining three problems report satisfactory improvements.
Notice that f2 shows an enormous increment in the number
of successful runs that resulted from identifying many poor
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runs and culling them. There is a chance for the model to
pluck the runs that actually turn out to yield qualitative so-
lution but are predicted as poor runs. This can be expected
as every predictor exerts certain amount of classification er-
ror. In fact, this is the prime reason for a small improvement
in the case of f3. Despite the inherent error rate of the new
technique it shows significant improvements in its results.

We also focus on utilizing the available computational re-
sources efficiently. The total execution time results of stan-
dard GE vs RPM+GE show a significantly high amount of
reduction at o = 0.05. At the end, it helped in optimal
utilization of the GE computational resources.

5. CONCLUSION

This study has improved the solution quality of indepen-
dent GE runs by applying a completely novel prediction ap-
proach that uses an accurate ACO classifier to devise a rel-
atively simple prediction model. This also has significantly
reduced the time spent on executing GE to attain the de-
sirable quality of the solution. We focus on extending this
in two steps: the first step will be to tackle the scaled up
versions of the problems, in the next step we investigate in
rapidly retraining the predictors as explained in [2, 8], that
would result in highly accurate predictors.
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