
Comparison of Linear Genetic Programming Variants for
Symbolic Regression

Léo Françoso Dal Piccol Sotto
Institute of Science and Technology (ICT)

Federal University of São Paulo (UNIFESP)
São José dos Campos, SP, Brazil

leo.sotto352@gmail.com

Vinícius Veloso de Melo
Institute of Science and Technology (ICT)

Federal University of São Paulo (UNIFESP)
São José dos Campos, SP, Brazil

vinicius.melo@unifesp.br

ABSTRACT

In this paper, we compare a basic linear genetic program-
ming (LGP) algorithm against several LGP variants, pro-
posed by us, on two sets of symbolic regression benchmarks.
We evaluated the influence of methods to control bloat, in-
vestigated these techniques focused in growth of effective
code, and examined an operator to consider two successful
individuals as modules to be integrated into a new individ-
ual. Results suggest that methods that deal with program
size, percentage of effective code, and subfunctions, can im-
prove the quality of the final solutions.

Categories and Subject Descriptors

I.2.2 [Artificial Intelligence]: Automatic Programming,
Program Synthesis, Program Modification; I.2.8 [Problem

Solving, Control Methods, and Search]: Heuristic Meth-
ods; D.1.2 [Programming Techniques]: Automatic Pro-
gramming

Keywords

Symbolic Regression; Linear Genetic Programming

1. INTRODUCTION
Linear genetic programming is a type of genetic program-

ming that evolves linear programs, causing its data flow to
form a graph [2]. In LGP, individuals are represented as a
sequence of instructions, each using results of previous in-
structions, constant values, or input values, and storing its
results to registers.

Works that have tested LGP in some instances of symbolic
regression problems have reported that it outperforms basic
TGP (tree-based GP) [2, 5]. In this work, the focus is to
analyse how modified versions perform when compared to
the basic implementation.

The baseline LGP implementation in this work is based
only in macro and micro-mutations, taking into considera-

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.

http://dx.doi.org/10.1145/2598394.2598472.

tion the results obtained in [1], which was the setup that
presented the best results. We named this algorithm eff-

mut. Macro-mutations consist of inserting or deleting a
whole instruction, while micro-mutations consist of chang-
ing a destination register, an argument or an operator within
an instruction.

All variations compared in this work were configured with
random generation of initial population, size of population
and number of generations equal to 1000, initial size of in-
dividuals 20 and maximum size 200, tournament of size
10 with elite of size 1, conditional reproduction (but for
union lgp), eight registers (but for union lgp, which used
4), rate of micro mutations 25% and of macro mutations
75%, being 66% of these the rate of insertions and 33% of
deletions. The constants used were integers from one to 9,
and π. The function set used was: +, -, *, /, xy, ex,

√

x,
log(x), sin(x), and cos(x).

Two variations among the ones tested include the usage
of non-parametric parsimony pressure [3] in order to control
the bloat and verify if, when the population is composed
mainly by smaller individuals, the evolution process can be
made easier and lead to better quality solutions. One of the
techniques is double tournament, which selects individuals
based on fitness and then, in the second stage of the tour-
nament, chooses the individuals based on size. The other
variation uses proportional tournament, which has a prob-
ability P of doing the tournament based on fitness or size.
In this paper it is used P = 0.5. We called these variations
double lgp and prop lgp.

Two other variations consist of using these same parsi-
mony pressure mechanisms modified to privilege individu-
als with a higher percentage of effective code. In LGP,
individuals tend to have a lot of non-effective code, that
is, instructions that are stored in registers that are never
used as arguments in the individual. By using these two
mechanisms, the aim is to investigate if a higher percent-
age of structurally effective code in the population improves
the evolution process and increases the probability of gen-
erating better quality solutions. We called these variations
eff double lgp and eff prop lgp.

The last variation is inspired by an issue observed more
easily when working with simpler functions. Suppose one
wants to find the function f(x) = x3 + x2, and one has
the individuals f(x) = x2 and f(x) = x3. Given the con-
stant and function sets, the chance of f(x) = x3 becoming
f(x) = x3 + x2 after a sequence of mutations is very low,
which usually causes these individuals to be stuck in local
optima. Considering that this problem can also occur in

135

Table 1: Median R2 over 50 executions for each algorithm in the sets of Nguyen and Keijzer. Each value is

accompanied by a signal <, = or >, which corresponds to the method performing worse, equal or better,

respectively, than effmut for the same function, according to the Wilcoxon test using α = 1%.

effmut double lgp prop lgp eff double lgp eff prop lgp union lgp

Function R
2

R
2

R
2

R
2

R
2

R
2

Nguyen1 0.995 0.987 = 0.999 > 0.999 > 0.998 > 1.000 >

Nguyen3 0.998 0.984 < 0.998 = 0.998 = 0.998 = 0.999 =

Nguyen4 0.991 0.987 < 0.991 = 0.992 = 0.994 = 0.997 >

Nguyen5 0.889 0.825 = 0.912 = 0.991 > 0.905 = 0.954 >

Nguyen6 0.994 0.991 = 0.995 = 0.999 > 0.994 = 1.000 >

Nguyen7 0.998 0.997 = 0.998 = 0.999 > 0.998 = 0.999 >

Nguyen8 1 1 = 1 = 1 = 1 = 1 =

Nguyen9 0.990 0.981 < 0.990 = 0.990 = 0.990 = 1.000 >

Nguyen10 0.996 0.971 < 0.996 = 0.996 = 0.996 = 0.999 >

Keijzer3 0.2561 -0.0172 < 0.1721 = -0.0169 < 0.2659 = 0.2385 =

Keijzer4 0.46072 0.00508 < 0.39933 = 0.42721 = 0.43721 = 0.45310 =

Keijzer5 0.9485 0.7597 < 0.9471 = 0.9318 = 0.9502 = 0.9486 =

Keijzer7 1 1 = 1 = 1 = 1 = 1 =

Keijzer8 1 1 = 1 = 1 = 1 = 1 =

Keijzer10 1 1 = 1 = 1 = 1 = 1 =

Keijzer11 0.945 0.945 = 0.945 = 0.945 = 0.945 = 0.924 <

Keijzer12 0.784 0.784 = 0.890 = 0.925 = 0.784 = 0.978 >

Keijzer13 -0.18077 -0.06270 = 0.13328 = -0.11850 = 0.00248 = 0.91490 >

Keijzer14 0.196 0.257 = 0.569 = 0.623 = 0.478 = 0.774 >

Keijzer15 0.875 0.739 < 0.866 = 0.783 < 0.864 = 0.899 =

Count < 8 0 2 0 1

Count = 12 19 14 19 9

Count > 0 1 4 1 10

more complex functions (though not necessarily so close to
the optimum solution), it was devised a simple crossover
operator that combines the effective code of two individu-
als by adding their results. We called this last variation
union lgp and used this union operator in the place of
macro-mutations, while keeping micro mutations.

We have tested the variations described above in the sets
of symbolic regression benchmark functions provided by Nguyen
and Keijzer in [4], which contains details about the training
and testing sets proposed for evaluation. Nguyen functions
are mostly single-variable polynomial problems, whereas Kei-
jzer functions include more variables and constants, and a
different set for testing, thus being more difficult to achieve
better results.

We have performed 50 executions for each pair of algo-
rithm and function on the training set. Table 1 presents the
median coefficient of determination (R2) - that is, the me-
dian of the best individuals of each run. The values shown
in Table 1 for the Keijzer set correspond to the validation
set, while for the Nguyen set they correspond to the training
set, as no testing set was specified in [4].

In Table 1, it can be observed that lgp prop, lgp prop eff,
and lgp double eff achieved some better results when com-
pared to effmut. However, the improvements in R2 was not
significant in the majority of functions (see the Wilcoxon’s
result) to indicate that a higher percentage of both smaller
individuals and effective code in the population leads to a
better evolution and to the generation of better quality so-
lutions.

For some of the Keijzer problems, even when the median
R2 was better in the proposed methods, the statistical test
resulted in no significant differences. It was observed that
very low quality models (outliers) influenced the compari-
son, but they can not be ignored.

As can be noticed, lgp union was the variation that had
the best performance in these experiments (count of > was

10). The strategy of merging two good solutions, although
simple, was able to improve results, as desired. That certifies
that this technique works also in more complex problems
than the one given in the example, since some results with
union lgp for the Keijzer set were better than the ones with
the other proposed methods.

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa
do Estado de São Paulo (FAPESP – Proc. 2013/20606-0).

2. REFERENCES
[1] M. Brameier and W. Banzhaf. Effective linear genetic

programming. Technical report, Department of
Computer Science, University of Dortmund, 44221
Dortmund, Germany, 2001.

[2] M. Brameier and W. Banzhaf. Linear Genetic

Programming. Springer, 2007.

[3] S. Luke and L. Panait. Fighting bloat with
nonparametric parsimony pressure. In Proceedings of

the 7th International Conference on Parallel Problem

Solving from Nature, PPSN VII, pages 411–421,
London, UK, UK, 2002. Springer-Verlag.

[4] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec,
R. Harper, K. De Jong, and U.-M. O’Reilly. Genetic
programming needs better benchmarks. In Proceedings

of the Fourteenth International Conference on Genetic

and Evolutionary Computation Conference, GECCO
’12, pages 791–798, New York, NY, USA, 2012. ACM.

[5] M. Oltean and C. Grosan. A comparison of several
linear genetic programming techniques. Complex

Systems, 14(4):285–314, 2003.

136

