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ABSTRACT
This paper presents a genotype-level distance metric for Ge-
netic Programming (GP) based on the symmetric difference
concept: first, the information contained in individuals is
expressed as a set of symbols (the content of each node, its
position inside the tree, and recurring parent-child struc-
tures); then, the difference between two individuals is com-
puted considering the number of elements belonging to one,
but not both, of their symbol sets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures
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1. INTRODUCTION
In an Evolutionary Algorithms (EA) a reliable distance

metric between individuals can be used to promote diver-
sity inside the population’s gene pool, to avoid the over-
exploitation of niches in the fitness landscape, to balance
exploration and exploitation, and – broadly speaking – to
prevent premature convergences.

Distances can be computed at genotype, phenotype or fit-
ness level. “Genotype” is the internal representation of can-
didate solutions; “fitness” is a set of values that encode the
goodness of an individual for the specific purpose of the
problem. “Phenotype” is much harder to characterize: in
biology, the phenotype is the sum of all the observable char-
acteristics of an organism that result from the interaction
of its genotype with the environment; but in evolutionary
computation, there is no proper environment, just its indi-
rect effects modeled by the fitness function.
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The proposed approach computes the symmetric differ-
ence [1] between the global information contained in two in-
dividuals; the global information itself is evaluated resorting
to corresponding recurring structures in the trees, a concept
similar to the n-grams [8] used in natural language analysis.

2. BACKGROUND

2.1 Fitness Sharing in Genetic Programming
The symbolic regression problem [7] is commonly used as

a paradigmatic illustration when introducing GP: the goal is
to automatically extract free-form equations that correlate
data from a given experimental dataset. Candidate solutions
are formulas, encoded as trees with terminal nodes corre-
sponding to constants and variables of the problem, while
intermediate nodes encode mathematical functions.

Fitness sharing is an established method to enforce di-
versity inside the population of an EA [5, 6], and it relies
upon the definition of a distance measurement between indi-
viduals. The general idea of fitness sharing is to artificially
decrease the fitness of individuals in crowded areas of the
search space. The fitness fi of an individual Ii is modified
in a fitness f ′

i = f/mi, where mi is dependent upon the
number of individuals in a given radius σs from individual
Ii, and their distance from the individual itself. In particu-
lar,

mi =

N∑
j=0

sh(Ii, Ij) (1)

where N is the number of individuals in the population,
and sh(Ii, Ij) is defined as

sh(Ii, Ij) =

{
1− (

d(Ii,Ij)

σs
)α d(Ii, Ij) < σs

0 d(Ii, Ij) ≥ σs
(2)

where σs is a user-defined radius, and d(Ii, Ij) is a dis-
tance measure applicable to the individuals’ representation.
α is a constant parameter that regulates the shape of the
sharing function. It has been experimentally demonstrated
that fitness sharing can lead to important improvements in
GP, permitting significantly smaller populations to achieve
similar results to larger populations using raw fitness [3].

2.2 Symmetric Difference
In set theory, the symmetric difference [1] of two sets A

and B is defined as

A4B = A ∪B −A ∩B (3)
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Figure 1: Example of the symbols adopted: node
and position (β), node and child (ν), node and chil-
dren (ξ), node and grandchildren (υ)

In words, the symmetric difference contains all elements
which are in either of the sets and not in their intersection.
The symmetric difference is usually denoted with the symbol
“4”. The symmetric difference exhibits useful properties for
a distance: it is commutative and the empty set is neutral.

3. PROPOSED APPROACH
A generic genotypic Universal Information Distance (UID)

for individuals in GP is proposed. Considering two individ-
uals Ii and Ij , the UID is defined as

UID(Ii, Ij) =
|S(Ii)4 S(Ij)|
|S(Ii)|+ |S(Ij)|

(4)

where S(I) represents a set of symbols associated individ-
ual I, 4 is the symmetric difference as defined in Equation
3, and operator |S| denotes the cardinality of set S.

The proposed genotype-level distance stems from a pre-
vious paper presenting a similar metric for Linear Genetic
Programming (LGP) [2]. In that work, following the idea
that recurring structures might possess meaning, nodes and
n-grams of nodes are adopted as symbols to characterize an
individual. An n-gram is a group of n consecutive items
from a longer sequence. Four new different kinds of symbols
are used to characterize a GP individual:

Node and position symbols encode the content of a
node and its (x, y) position inside the GP tree, where x is
the level of the node, and y its order inside the level;

Node and child symbols encode node A and one of its
children B, without considering its relative position;

Node and children symbols encode the content of node
A and all its children, also taking into account their position
with respect to the parent node;

Node and grandchildren symbols encode the content
of node A, all its children, and all its children’s children,
taking into account their position with respect to the parent
node.

Given a specific individual, all symbols belonging to each
category are computed and stored inside its symbol set. For
a summary of the symbols, see Figure 1.

Symbols, assigned to an individual when it is created, can
be later used to compute a distance between different indi-
viduals in the population. First, a symmetric difference is
performed on their symbol sets, and then the cardinality of
the resulting set is used to quantify the distance.

4. EXPERIMENTAL RESULTS
In order to validate the proposed approach, the minimal

GP engine TinyGP [4] was modified to include the UID. As

testbench, the very same example of symbolic regression re-
ported in the book was used. Each experiment evolved 1000
individuals for 100 generations, and was repeated ten times.
As a baseline, TinyGP was run unmodified. Then, when
using fitness sharing, three different radius where used: 0.1,
0.15 and 0.2 (the UID is a normalized value). For the sake of
efficiency, symbols described in Section 3 are computed re-
sorting to the DJB1 hash function. Finally, to further speed
up calculations, mi was simply set to the number of individ-
uals within the given radius divided by a constant k. Five
different values for k were tested.

Table 1: Percentage of fitness improvements using
fitness sharing with different parameters.

radius k = 1, 000 k = 500 k = 100 k = 50 k = 10

0.10 43.72 58.73 84.28 86.33 25.61
0.15 77.02 63.41 56.77 62.99 40.79
0.20 75.78 39.02 11.30 11.80 10.24

Table 1 reports the percentage of fitness improvements
using fitness sharing with the different parameters. It may
be noted that results using the diversity preservation mech-
anism are definitely superior, and that the UID can be ex-
ploited to evaluate similarity between the individuals.

5. CONCLUSIONS
This paper proposes a new distance metric for Genetic

Programming, based on the normalized symmetric difference
between the information contained in the genome, repre-
sented as symbols based upon the node’s content and recur-
ring structure in the binary trees. Experiments demonstrate
its potential and usefulness for implementing fitness-sharing
in a classical symbolic regression problem.
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