
On Improving Grammatical Evolution Performance in
Symbolic Regression with Attribute Grammar

Muhammad Rezaul Karim
Department of Computer Science

University of Calgary, Canada

mrkarim@ucalgary.ca

Conor Ryan
BDS Group, Department of CSIS

University of Limerick, Ireland
conor.ryan@ul.ie

ABSTRACT

This paper shows how attribute grammar (AG) can be used
with Grammatical Evolution (GE) to avoid invalidators in
the symbolic regression solutions generated by GE. In this
paper, we also show how interval arithmetic can be imple-
mented with AG to avoid selection of certain arithmetic op-
erators or transcendental functions, whenever necessary to
avoid infinite output bounds in the solutions. Results and
analysis demonstrate that with the proposed extensions, GE
shows significantly less overfitting than standard GE and
Koza’s GP, on the tested symbolic regression problems.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

Attribute Grammar, Symbolic Regression

1. INTRODUCTION
GE (a grammar-based GP system) can generate numerous

ineffective subexpressions for the symbolic regression prob-
lem. Those ineffective subexpressions can be generated due
to the presence of some special structures called invalida-
tors [3], which nullify the effect of ineffective code. These
ineffective subexpressions not only increase the size of the
derived solutions, but may lead to poor generalization abil-
ity of the evolved models. Because of the limited expressive
power of CFGs used in standard GE, it is not possible to
avoid invalidators in GE evolved symbolic regression models.
In this paper, we show how AG can be effectively used with
GE to generate symbolic regression expressions without gen-
erating certain types of invalidators as well as how interval

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2598488 .

arithmetic can be implemented using AG. Unlike the previ-
ous application of interval arithmetic in GP, where interval
method was used to perform static analysis to discard cer-
tain trees [2], here interval method is used in a different way.
Interval arithmetic is used in this paper to avoid selection
of certain arithmetic operators or transcendental functions
that leads to infinite bound for the resulting expression, if
selected and applied at a particular context.

2. AG FOR SYMBOLIC REGRESSION

Table 1: AG for the symbolic regression problem
Rule Semantic Function
<Prog> := <Expr>
<Expr> 1 := Expr1.last = ’DC’

(<Expr>2 <Expr>3 <Op>) Op.allowed =
genAllowedOp(Expr2,Expr3,Op)
setOpIntervalBounds(Expr1,Expr2,Expr3,Op)

<Expr>1 := (<Expr>2) <Pre-op> Pre-op.allowed=genAllowedPreOp(Expr2)
Expr1.last = Pre-op.last
setPreOpIntervalBounds(Expr1,Expr2,Pre-op)

<Expr> := <Var> Expr.last = Var.last
Expr.low = Var.low
Expr.up= Var.up

<Expr> := <Const> Expr.last = Const.last
Expr.low = Const.low
Expr.up = Const.up

<Op> := + Op.last = ‘+’
<Op> := ∗ Op.last = ‘*’
<Op> := / Op.last = ‘/’
<Op> := − Op.last = ‘-’
<Pre-op> := sin Pre-op.last = ‘sin’
<Pre-op> := cos Pre-op.last = ‘cos’
<Pre-op> := exp Pre-op.last = ‘exp’
<Pre-op> := log Pre-op.last = ‘log’
<Const> := 1.0 Const.last = ’1.0’

setConstantIntervalBounds(Const,1.0)
<Const> := 2.0 Const.last = ’2.0’

setConstantIntervalBounds(Const,2.0)
... ...
<Const> := 9.0 Const.last = ‘9.0’

setConstantBounds(Const,9.0)
<Var> := x0 Var.last = ’x0’

setVariableIntervalBounds(V ar,x0)
... ...
<Var> := xn Var.last = ′x′

n

setVariableIntervalBounds(V ar, xn)

We use a postfix L-attributed [1] grammar for the sym-
bolic regression problem. The advantage of using postfix
grammar is that it ensures that the values of all the necessary
operands for an operator or a function are available, before
those values can be used in the interval arithmetic to rule
out some operators from <Op> or <Pre-op>. Every non-
terminal symbol in this grammar has a synthesized attribute
last to store the last selected variable, last operator, last se-
lected function or last constant value, depending on the non-
terminal. The non-terminal symbol <Op> and <Pre-op>
in this grammar has an inherited attribute allowed. This

139



Table 2: Best of run individuals produced by the three methods. NRMS [2] refers to the training performance
in terms of percentage point and is averaged over 50 runs. Linearly scaled MSE (mean squared error) is
used while calculating NRMS [2]. ‘*’ indicates that the difference between GE with AG and the method as
indicated by a column is statistically significant (Mann-Whitney U test with p < 0.05). When the difference is
statistically significant, the value of Vargha-Delaney A measure is shown beside ‘*’ in parenthesis. Overfitting
refers to the destructing overfitting on test data and it indicates the percentage of times the MSE exceeds
10000. For problem B, the training set is [0 : 1 : 100] [2], while the test set is rnd(0,100) [2] with 50 cases.
For the other problems, the training set is [-3 : 0.1 : 3], while the test set is rnd(-3,3)(50 cases).
Problem GE with AG GE with CFG Koza-GP

NRMS Overfitting NRMS Overfitting S-test NRMS Overfitting S-test
A. f(x) = 0.3xsin(2πx) 62.670± 1.587 0% 38.640 ± 8.860 94% *(0.040) 53.700 ± 7.630 0% *(0.110)
B. f(x) = arcsinh(x) 0.996 ± 0.002 0% 0.994 ± 0.000 0% *(0.000) 0.995 ± 0.000 82% *(0.000)
C. f(x) = xy + sin((x− 1)(y − 1)) 14.773 ± 0.260 0% 17.790 ± 0.030 0% *(1.000) 13.390 ± 0.700 4% *(0.001)
D. f(x) = x4

− x3 + y2/2− y 3.755 ± 2.389 4% 6.660 ± 2.116 94% *(0.914) 4.700 ± 1.369 18% *(0.805)
E. f(x) = x3/5 + y3/2− y − x 8.384 ± 7.026 2% 12.497 ± 0.961 86% *(0.902) 14.538 ±1.531 16% *(0.920)

attribute holds a list of valid binary operators or transcen-
dental functions, depending on the non-terminal. When
<Pre-op> is expanded, it can select a function from this
list of valid functions, represented by the attribute allowed.
For this non-terminal, genAllowedPreOp, an auxiliary func-
tion of the corresponding semantic function is used to com-
pute the value of allowed. This auxiliary function does two
things. First, it checks whether the value of the last selected
function is exp or not. If it is, it does not include exp in the
list so that any structure like exp(exp(exp(exp(x)))) can be
avoided. This structure is a kind of invalidator leading to ∞.
Second, using interval arithmetic, the lower (the value of the
attribute low) and upper bound (the value of the attribute
up) of the symbol <Expr>2 of the relevant production (See
Table 1), it rules out some of the possible functions, which
if selected and applied on the subexpression represented by
the symbol <Expr>2, leads to infinite bound.

For the non-terminal <Op>, the value of the attribute
allowed is evaluated using genAllowedOp, an auxiliary func-
tion of the corresponding semantic function. Like the other
auxiliary function genAllowedPreOp, it also performs two
checks: one to avoid invalidators (e.g. 0) that is caused by
subexpressions like x-x or c-c and the other is to avoid ex-
pressions with infinite output bound. These two checks are
based on the value of the attribute last and attributes repre-
senting interval bounds (low and up), respectively, of the two
non-terminals <Expr>2 and <Expr>3 representing two in-
put subexpressions in the relevant production. Using inter-
val arithmetic, this function rules out some of the possible
binary operators, which if selected at the current context and
applied on these two input subexpressions, leads to infinite
output bound. All semantic functions in the grammar with
name in the format setXXXIntervalBounds (XXX can
be ‘Op’ for binary operators, ‘Variable’ for variables etc.),
set the lower and upper interval bounds of the symbols on
the head of the relevant productions.

3. EXPERIMENTATION
For GE, in all experiments, we use a steady state GA, a

population size of 500 individuals, roulette wheel selection,
one-point crossover with a probability 0.9, and bit muta-
tion with probability 0.01. We use Sensible Initialization
(grow probability of 0.5, the maximum depth of 10 and the
minimum depth of 5) for initializing the population. Like
standard GE, 8-bit codons are used with wrapping size of 5.

First, we analyze the performance of the three algorithms
based on the training error. From Table 2, we see that

GE with AG performs better than GE with CFG for three
problems (Vargha-Delaney A measure value>0.5), while the
latter was better than the former for two problems. It
seems that all three algorithms have good performances on
the training set. Even though GE with CFG shows good
training performance, it shows extreme overfitting on three
problems (problem A, D and E ), with problem A showing
94% overfitting, problem D showing 94% overfitting and the
problem E showing 86% overfitting. GE with AG, on the
other hand, shows no overfitting for 3 problems and very
small overfitting for the rest of the two problems. Koza’s
GP with linear scaling also suffers from overfitting in 3 of
the 5 benchmark problems with problem B (82%), problem
C (4%), problem D (18%) and problem E (16%) overfitting.
From the results, it is evident that when the proposed AG
is used with GE, it reduces overfitting.

4. CONCLUSION
In this paper, we have shown how AG can be used to avoid

certain types of invalidators. We have also shown how GE
can be benefitted by avoiding selections of certain functions
and binary operators that can be the cause of infinite output
bound for the evolved expressions. The results and analysis
show that when invalidators are avoided and interval arith-
metic is implemented, GE shows significantly less overfitting
than standard GE and Koza’s GP on the tested problems.

Acknowledgments

This research was supported by the Science Foundation of
Ireland and conducted at the BDS group, University of Lim-
erick, Ireland.

5. REFERENCES
[1] M. R. Karim and C. Ryan. Sensitive ants are sensible

ants. In Proceedings of the fourteenth international

conference on Genetic and evolutionary computation

conference, GECCO ’12, pages 775–782, New York,
NY, USA, 2012. ACM.

[2] M. Keijzer. Improving symbolic regression with interval
arithmetic and linear scaling. In Proceedings of the 6th

European conference on Genetic programming,
EuroGP’03, pages 70–82, Berlin, Heidelberg, 2003.
Springer-Verlag.

[3] S. Luke. Code growth is not caused by introns. In Late

Breaking Papers at the 2000 Genetic and Evolutionary

Computation Conference, pages 228–235. Morgan
Kaufmann, 2000.

140




