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ABSTRACT
This paper describes a method of solving the symbolic re-
gression problem using developmental linear genetic pro-
gramming (DLGP) with an epigenetic hill climber (EHC).
We propose the EHC for optimizing the epigenetic proper-
ties of the genotype. The epigenetic characteristics are then
inherited through coevolution with the population. Results
reveal that the EHC improves performance through main-
tenance of smaller expressed program sizes. For some prob-
lems it produces more successful runs while remaining es-
sentially cost-neutral with respect to number of fitness eval-
uations.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; J.2 [Computer Applications]: Physi-
cal Science and Engineering—Engineering

General Terms
Algorithms

Keywords
Genetic programming; epigenetics; differential equations; sys-
tem identification

1. LINEAR GP WITH EPIGENESIS
Genetic programming (GP) has become a popular method

for searching equation space and finding nonlinear differen-
tial equation solutions [3, 2, 4]. GP traditionally represents
individuals using tree structures. Here we use a syntax-
free linear representation to conduct GP. This encoding is
meant to maximize flexibility of the representation, simplify
genetic operations, and allow for easy implementation of epi-
genetics. The term epigenetics is used broadly to refer to the
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ways in which gene expression is developed and inherited [5].
Methylation [6] silences clusters of genetic material, allowing
separation of genotype from the phenotype and the creation
of non-coding segments (i.e. introns). Moderate levels of in-
trons can improve EA performance by reducing the destruc-
tive effect of crossover operations while maintaining blocks
of effective code [7, 1, 8]. We implemented two characteris-
tics of methylation: 1) dependence on environmental factors
by use of the EHC, and 2) inheritability by coevolution of
epilines with their corresponding genotypes.

Equations are represented by linear genotypes, as demon-
strated in Figure 1. In addition to having a genotype com-
posed of a list of instructions, the EHC creates a binary
array of equivalent length in each individual, referred to as
an epiline. During genotype to phenotype conversion, only
instructions from the list with a true value in the correspond-
ing epiline are executed. Each generation, the population
undergoes one iteration of EHC to optimize the epiline.

The results are summarized in Table 1. Using DLGP alone
found exact solutions in 25 out of 30 runs (83.33%) for both
the mass spring damper and van der Pol oscillator. After
adding epigenetic co-evolution and the EHC, the program
succeeded for 100% of the runs for both cases. This im-
provement in success rate was achieved without a significant
increase in computational effort, as shown in Table 1. While
the total genotypic size remains similar to DLGP, with EHC
activated the effective size of the programs (the number of
executed instructions) was 33% shorter for the mass spring
damper and 28% shorter for the van der Pol oscillator.

Using the Pagie-1 problem as a benchmark, we varied the
average initial percent of genes that were turned on and the
switching rate, denoted by “i(percent)” and by “t(percent)”
in Figure 2, and ran 50 trials of each setting. There was
not a statistically significant improvement in Mean Best Er-
ror, but we saw improvements in effective program size and
beneficial genetics (genetic operations that result in fitter
offspring). This agrees with previous literature showing the
beneficial effects that introns can have [1, 7]. In all of these
cases the effective program sizes throughout the run were
significantly lower than without the hill climber, indicating
that it may be a good way to combat the problem of code
growth and contribute to equation parsimony.
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Table 1: Performance Comparisons. No evaluation differences are significant to less than .05 using the
two-tailed t-test pt or the non-parametric ranked t-test [9], pr. All size differences are (pt < .001, pr < .001).

Problem Trials Method Success Rate Evaluations Mean Effective Size

ẍ = −1/2(0.75ẋ + 3x− F ) 30 DLGP 83.33% 8.83E05 145.11

30 DLGP+EHC 100% 10.77E05 96.65

ẍ = −1.5(x2 + 1)ẋ− x 30 DLGP 83.33% 9.20E05 140.06

30 DLGP+EHC 100% 9.27E05 101.34

ẋ = 3x− 2xy − x2 50 DLGP 100% 8.9202E05 29.63

50 DLGP+EHC 100% 8.0602E05 24.69

ẏ = 2y − xy − y2 50 DLGP 100% 8.1724E05 30.3595

50 DLGP+EHC 100% 8.6847E05 25.1297

Figure 1: Epigenetics added to the original encoding
of f = x + y−3

4(z+4)
, which in this example results in

f = x−3
(z∗4) .
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Figure 2: Beneficial crossover percentages for the
Pagie-1 problem with various settings of the EHC.
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