
A Comparison between
Geometric Semantic GP and Cartesian GP

for Boolean Functions Learning∗

Andrea Mambrini
School of Computer Science

University of Birmingham
B15 2TT, Birmingham, United Kingdom

a.mambrini@cs.bham.ac.uk

Luca Manzoni
Univ. Nice Sophia Antipolis, CNRS, I3S

UMR 7271, 06900 Sophia Antipolis, France
luca.manzoni@i3s.unice.fr

ABSTRACT
Geometric Semantic Genetic Programming (GSGP) is a re-
cently defined form of Genetic Programming (GP) that has
shown promising results on single output Boolean problems
when compared with standard tree-based GP. In this paper
we compare GSGP with Cartesian GP (CGP) on compre-
hensive set of Boolean benchmarks, consisting of both single
and multiple outputs Boolean problems. The results ob-
tained show that GSGP outperforms also CGP, confirming
the efficacy of GSGP in solving Boolean problems.

Keywords
Geometric Semantic Genetic Programming, Cartesian Ge-
netic Programing, Boolean functions

1. INTRODUCTION AND BASIC NOTIONS
Genetic Programming (GP) was introduced as a method

to evolve computer programs in a way similar to classical
Genetic Algorithms. In this work we compare Geometric
Semantic GP (GSGP), a recently defined kind of GP based
on semantic operators introduced by Moraglio and cowork-
ers [5], with Cartesian GP (CGP) (see [3] for a comprehen-
sive overview). Since its definition, GSGP has been com-
pared to traditional tree-based GP [5] with the standard
subtree crossover and mutation operators, on single-output
Boolean problems. In order to assess the performances of
GSGP in a more exhaustive way, this work compares GSGP
and GSGP with a particular variant of the mutation opera-
tor, called block mutation [1], with CGP on a comprehensive
set of Boolean benchmarks. The results will show that for
both kinds of benchmarks, GSGP and GSGP with block mu-
tation outperform CGP, confirming the efficacy of GSGP in

∗This work has been partially supported by the French Na-
tional Research Agency project EMC (ANR-09-BLAN-0164)
and by EPSRC (Grant No. EP/I010297/1).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-1964-5/14/07
http://dx.doi.org/10.1145/2598394.2598475 .

solving Boolean problems even when compared with non-
tree-based GP and on multiple-output benchmarks.

2. EXPERIMENTAL SETTINGS
To compare CGP, GSGP, and GSGP with block mutation

we have used the following 4 benchmark problems: k-even
parity (with k ranging from 4 to 6), k-multiplexer (k = 3 and
k = 6), digital adder (2 and 3 bits), and digital multiplier
(2 and 3 bits). The inclusion the last two problems, which
are multiple-output, follows the suggestion of [2] and [7].

For CGP we have used as a base the implementation
by Julian Miller1. The parameter settings were derived
from [4], in which an high number of nodes and a low muta-
tion probability were found to be effective. Hence, we used
4000 nodes with a mutation rate of 1%. The population size
was 5 and each individual could use AND, OR, NOR, and
NAND as actions for the functional units.

For GSGP we have used a (1 + 1)EA setting [6]: the pop-
ulation is composed of one individual, at every generation
the unique individual in the population is mutated and, if
the resulting tree has a better fitness than its parent, it re-
places the current individual. Since the population has size
1, we don’t perform crossover. We compared Forcing Point
Mutation (see Definition 3 in [1]) with Multiple Size Block
Mutation (see Definition 9 in [1]). The starting individual
is an empty tree, returning “false” on all inputs. To produce
multiple outputs with GSGP we have represented every in-
dividuals as an array of standard (i.e., single-output) GSGP
trees, each one providing one output. The mutation is per-
formed by randomly selecting a position of the array and
then mutating the tree in that position.

We have performed 100 independent runs for every bench-
mark problem using a training set comprising all possible
inputs (i.e., a complete training set). We have used as a
fitness the fraction of correct output bits. Notice that, for
multiple-outputs problem, this fitness does not always cor-
respond to the fraction of correct outputs (since one output
consist in more than a bit). The evolution was stopped af-
ter reaching a perfect score, i.e., all correct outputs, on the
training set.

1http://www.cartesiangp.co.uk/resources/
CGP-version1_1.7z

143



4
-e
v
e
n

p
a
ri
ty

5
-e
v
e
n

p
a
ri
ty

6
-e
v
e
n

p
a
ri
ty

3
-m

u
lt
ip
le
x
e
r

6
-m

u
lt
ip
le
x
e
r

2
-b

it
s
a
d
d
e
r

3
-b

it
s
a
d
d
e
r

2
-b

it
s
m
u
lt
ip
li
e
r

3
-b

it
s
m
u
lt
ip
li
e
r

GSGP

Average 85.8 217.9 484.4 33.5 502.2 849.3 6200.5 387.7 4099.2
Std. Dev. 38.0 88.7 128.5 21.2 154.8 194.6 1100.4 144.8 1049.3
Median 76.0 198.5 473.0 28.5 453.5 825.0 6096.0 365.0 3874.5

90th percentile 136.0 323.0 628.5 57.5 765.0 1107.5 7521.0 583.0 5313.5

GSGP
Average 372.1 1102.1 2967.6 49.0 706.6 2209.8 19580.5 949.9 12116.9

(block)
Std. Dev. 163.6 419.1 860.4 30.4 284.7 743.0 5259.7 471.5 4445.3
Median 360.0 977.0 2916.0 42.0 670.0 2157.5 18590.0 810.5 11312.5

90th percentile 585.5 1715.0 4027.0 93.5 1117.0 3146.5 26964.5 1552.5 18597.5

CGP

Average 2450.7 8447.3 24722.5 161.8 1487.5 13147.2 110693.0 1898.3 296260.0
Std. Dev. 2848.8 5764.8 17486.0 314.0 2304.6 10012.8 80568.4 1754.4 169132.0
Median 1727.0 7164.5 21886.0 88.0 1041.0 10628.5 86477.0 1493.5 240308.0

90th percentile 4970.0 16658.5 39388.5 322.5 2509.0 26457.5 219518.0 3708.0 521820.5

Table 1: A summary of the results. For each problem and for each method, the average, standard deviation,
median, and the 90th percentile of the number of generations needed to reach the optimum are reported.

3. EXPERIMENTAL RESULTS
We report the results of the experiments in Table 1. We

have performed a Mann-Whitney U-test (see [8] for a de-
scription) with a significance level of 0.01 under the alter-
native hypothesis that the GSGP (resp., GSGP with block
mutation) find the optimum before CGP with probability
greater than one half. In all cases GSGP and GSGP with
block mutation performed significantly better than CGP.

In all problems tested we have observed the same pat-
tern of behavior from the three tested methods. GSGP was
the best performer in all problems, GSGP with block mu-
tation the second best, and CGP was in all cases the worst
performer. From the high standard deviation and the gap
between median and average we can observe the strong pres-
ence of outliers in CGP. Such problem is absent in both
GSGP and GSGP with block mutation, for which the num-
ber of generations is closer to the average. It is interesting
to note that, in all benchmarks, as the problem difficulty
increases the gap between GSGP (resp., GSGP with block
mutation) gets wider, i.e., the two semantic methods seems
to scale better.

4. CONCLUSIONS
In this paper we have performed a comparison between

Cartesian GP and Geometric Semantic GP with two differ-
ent mutation operators on a wide range of single and multi-
ple outputs problems. In all the considered problems GSGP
is able to find the optimum using less generations than the
other methods. GSGP with block mutation ranks second,
while CGP has the worst performances in all the benchmark
problems. Moreover the standard deviation of the number
of generations to find the optimum for both the GSGP op-
erators tested is lower than the one for CGP, making the
performance of GSGP more stable. The performance gap
between the three methods is statistically significant for all
the considered benchmark problems. This result confirms
GSGP as a good method to solve Boolean problems.

Possible future works can compare GSGP with more ad-
vanced variants of CGP and investigate the use of semantic

crossover in GSGP. Another important line of research to
assess the performance of GSGP as a learning tool, is to in-
vestigate how the formula evolved from a small training set
generalize on unseen input.

5. REFERENCES
[1] A. Mambrini, L. Manzoni, and A. Moraglio. Runtime

analysis of mutation-based geometric semantic genetic
programming on boolean functions. In Foundations of
Genetic Algorithm - FOGA 2013, pages 119–132,
Adelaide, Australia, January 2013. ACM.

[2] J. McDermott, D. R. White, S. Luke, L. Manzoni,
M. Castelli, L. Vanneschi, W. Jaskowski, K. Krawiec,
R. Harper, K. De Jong, and U.-M. O’Reilly. Genetic
programming needs better benchmarks. In Proceedings
of the fourteenth international conference on Genetic
and evolutionary computation conference, GECCO ’12,
pages 791–798, New York, NY, USA, 2012. ACM.

[3] J. F. Miller. Cartesian genetic programming. Springer,
2011.

[4] J. F. Miller and S. L. Smith. Redundancy and
computational efficiency in cartesian genetic
programming. IEEE Transactions on Evolutionary
Computation, 10(2):167–174, April 2006.

[5] A. Moraglio, K. Krawiec, and C. Johnson. Geometric
semantic genetic programming. In PPSN ’12, volume
7491 of Lecture Notes in Computer Science, pages
21–31. Springer, 2012.

[6] F. Neumann and C. Witt. Bioinspired Computation in
Combinatorial Optimization: Algorithms and Their
Computational Complexity. Springer, 2010.

[7] D. White, J. McDermott, M. Castelli, L. Manzoni,
B. Goldman, G. Kronberger, W. Jaśkowski, U. O’Reilly,
and S. Luke. Better gp benchmarks: community survey
results and proposals. Genetic Programming and
Evolvable Machines, 14(1):3–29, 2013.

[8] D. A. Wolfe and M. Hollander. Nonparametric
statistical methods. John Wiley New York, 1973.

144




