
Incorporating Expert Knowledge in Object-Oriented
Genetic Programming

Michael Richard Medland
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada

mm08sj@brocku.ca

Kyle Robert Harrison
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada

kh08uh@brocku.ca

Beatrice Ombuki-Berman
Dept. of Computer Science

Brock University
St. Catharines, ON, Canada

bombuki@brocku.ca

ABSTRACT
Genetic programming (GP) has proven to be successful at
generating programs which solve a wide variety of problems.
Object-oriented GP (OOGP) extends traditional GP by al-
lowing the simultaneous evolution of multiple program trees,
and thus multiple functions. OOGP has been shown to
be capable of evolving more complex structures than tra-
ditional GP. However, OOGP does not facilitate the incor-
poration of expert knowledge within the resulting evolved
type. This paper proposes an alternative OOGP method-
ology which does incorporate expert knowledge by the use
of a user-supplied partially-implemented type definition, i.e.
an abstract class.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program Synthesis

Keywords
Expert Knowledge; Object-Oriented Genetic Programming

1. INTRODUCTION
Genetic programming (GP) [4] is an artificial intelligence

paradigm which uses the concept of Darwinian evolution
to automatically synthesize computer programs. While GP
provides the means to generate simple solutions quite easily,
using GP to evolve sophisticated programs which consist of
many functions is challenging. Understanding the output
and, therefore, the behaviors of evolved programs is also a
significant challenge.

GP has been shown to produce fit programs in a wide
variety of different applications [5]. Likewise, there have
been a variety of methodologies introduced to extend and
enhance the capabilities of GP [1, 3, 5].

Linear GP [3], proposed as an extension to traditional GP,
took a more imperative approach to program representation
by using array structures for chromosomes. While linear GP

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598494.

effectively modeled the imperative programming paradigm,
the concept of entities with multiple behaviors was not fa-
cilitated.

Object-oriented GP (OOGP)[1] introduced a multi-tree
representation allowing multiple functions, corresponding to
the constituent behaviors of an object, to be simultaneously
evolved. While OOGP facilitates the evolution of objects
using GP, the behavior of the evolved objects is entirely
defined by the output of the GP system. Partial solutions,
known a priori, cannot be easily incorporated within the
resulting program using OOGP.

This paper proposes a novel GP paradigm which combines
the imperative style of linear GP with the object-oriented
approach of OOGP while allowing the incorporation of ex-
pert knowledge in the resulting programs. The proposed GP
system, LinkableGP, makes use of a partially-implemented
type definition, i.e., an abstract class, to allow expert knowl-
edge to be embedded within the evolved program.

2. FACILITATION OF EXPERT
KNOWLEDGE

To facilitate expert knowledge in GP, a novel object-
oriented linear GP system, LinkableGP, is proposed. Link-
ableGP makes use of 1) an object-oriented methodology to
construct class-based programs and 2) linear GP to con-
struct imperatively-defined methods within the class. Ex-
pert knowledge is incorporated by supplying a partially-
implemented class, i.e., an abstract class, to the system.
This abstract class allows the user to incorporate domain
knowledge of the problem by providing the implementation
of methods where the desired functionality is known a pri-
ori. The unimplemented methods from the abstract class are
evolved using LinkableGP’s evolutionary strategies. Thus,
each individual in the LinkableGP system is a stand-alone
subclass derived from the supplied abstract class.

2.1 Structure and Representation
The structure of individuals within a population in Link-

ableGP are inspired by both linear GP and OOGP repre-
sentations. Individuals are represented by a collection of
chromosomes, each defining a derived implementation of an
abstract (i.e., unimplemented) method from the supplied ab-
stract class. Each chromosome contains an array of integers
which, during the genotype to phenotype conversion pro-
cess, translates to a code sequence that constructs a single
method in the resulting phenotype.

The genotype to phenotype conversion process consists
of using each chromosome to select a sequence of functions

145



corresponding to each method implementation. Selection
operations are performed by enumerating the available can-
didates and using the respective chromosome value in a mod-
ulo fashion. In order to build each method, a language con-
text (i.e., a set of functions, constants, and constant gener-
ators) must be defined. Construction of the method starts
with a variable bag containing, initially, the parameters of
the method being implemented. The first value from the
chromosome’s integer array is used to select a satisfiable1

function from the language context. Then, successive chro-
mosome values are used to satisfy each argument of the func-
tion by selecting a variable with the correct type from those
available in the variable bag, constants, and constant gener-
ators. Finally, if the selected function has a non-void return
type, a further chromosome value is used to select either a
mutable variable from the variable bag or a new variable
(which is then added to the variable bag). This process
continues until all chromosome values are exhausted. Chro-
mosomes are extended as necessary to ensure the completion
of each function call.

2.2 Operations
LinkableGP implements a typical, generational genetic al-

gorithm that employs crossover, mutation, elitism, and se-
lection operations. Crossover is a two phased operation.
The first phase, referred to as mating, selects two parents us-
ing a standard tournament selection operator and constructs
a bit-mask to determine the chromosomes which are to be
inherited from each parent. Each bit in the randomly gener-
ated bit-mask acts a parent discriminator, i.e., the chromo-
some at index i is selected from parent 1 or parent 2 based
upon whether the bit at index i is a 0 or 1.

The second phase, referred to as mixing, occurs on each
chromosome of the child with probability ρ. During the
mixing phase, a chromosome in the child is replaced by the
offspring resulting from a one-point crossover operation be-
tween the parents. A random cut-point is selected within
the shortest parent chromosome. The mixing phase occurs
in one of two ways, with equal probability: 1) the genetic
material up to the cut-point is taken from parent 1 while
the genetic material after the cut-point is taken from parent
2, or, 2) the genetic material up to the cut-point is taken
from parent 2 while the genetic material after the cut-point
is taken from parent 1.

Mutation in LinkableGP is done either by extending
the length of a chromosome or by randomly changing val-
ues within a chromosome. Extension mutation and random
change mutation operations are performed with a probabil-
ity of m1 and m2, respectively, on each chromosome of a
child produced during crossover.

2.3 Example
A generalized algorithm, shown in Algorithm 1, is pro-

posed to construct a graph model based on a priori knowl-
edge of the expected behavior for existing graph models. In
this example, what is knownn is that the graph will have
some initial state (initializeGraph) but that state is unclear.
After the graph is initialized, it is known that for some given
number of iterations, t, a new vertex, v, will be added to
the graph. Furthermore, n existing vertices, denoted collec-
tively as S, will be selected. Finally, each vertex in S will be

1All of its arguments can be satisfied from the variable bag,
the collection of constants, or constant generators

connected to v. However, it is not known exactly how the
methods initializeGraph, selectNumber, selectVertices, and
createEdge should work. Thus, they are evolved by Link-
ableGP where each are represented via a chromosome of an
individual. The conversion between genotype to phenotype
here results in a fully implemented graph model class.

Algorithm 1: Generalized Graph Model

Data: t number of time steps
Result: A graph
g ← initializeGraph();
for i ∈ 1 : t do

v ← g.AddV ertex(), n← selectNumber();
S ← selectV ertices(g, n);
for s ∈ S do

createEdge(g,v, s);
end

end
return g;

3. CONCLUSION
This paper proposed a novel genetic programming (GP)

paradigm which facilitates the incorporation of expert knowl-
edge within the evolved program structure. The proposed
GP system, LinkableGP, was inspired by both linear GP
and object-oriented GP (OOGP) methodologies. However,
the LinkableGP system combined the benefits of each ap-
proach by allowing the simultaneous evolution of multiple
imperative-styled methods. LinkableGP uses a representa-
tion whereby an individual is comprised of multiple chro-
mosomes, each of which directly correspond to a method
which is to be evolved. Furthermore, LinkableGP facilitates
expert knowledge through partially-implemented types, al-
lowing the user to embed portions of the solution known a
priori within the resulting individuals.

4. REFERENCES
[1] R. Abbott. Object-oriented genetic programming, an

initial implementation. In International Conference on
Machine Learning: Models, Technologies and
Applications, pages 26–30, 2003.

[2] A. Bailey, M. Ventresca, and B. Ombuki-Berman.
Automatic generation of graph models for complex
networks by genetic programming. In Proceedings of the
Fourteenth International Conference on Genetic and
Evolutionary Computation Conference, GECCO ’12,
pages 711–718, New York, NY, USA, 2012. ACM.

[3] M. Brameier and W. Banzhaf. Explicit control of
diversity and effective variation distance in linear
genetic programming. In J. Foster, E. Lutton, J. Miller,
C. Ryan, and A. Tettamanzi, editors, Genetic
Programming, volume 2278 of Lecture Notes in
Computer Science, pages 37–49. Springer Berlin
Heidelberg, 2002.

[4] J. R. Koza. Genetic Programming: vol. 1, On the
programming of computers by means of natural
selection, volume 1. MIT press, 1992.

[5] R. Poli, W. W. B. Langdon, N. F. McPhee, and J. R.
Koza. A field guide to genetic programming. Lulu. com,
2008.

146




