
Effective Simplification of Evolved Push Programs Using a
Simple, Stochastic Hill-climber

Lee Spector
Cognitive Science
Hampshire College
Amherst, MA 01002

lspector@hampshire.edu

Thomas Helmuth
Computer Science

University of Massachusetts
Amherst, MA 01003

thelmuth@cs.umass.edu

ABSTRACT
Genetic programming systems often produce programs that
include unnecessary code. This is undesirable for several
reasons, including the burdens that overly-large programs
put on end-users for program interpretation and mainte-
nance. The problem is exacerbated by recently developed
techniques, such as genetic programming with geometric se-
mantic crossover, that tend to produce enormous programs.
Methods for automatically simplifying evolved programs are
therefore of interest, but automatic simplification is non-
trivial in the context of traditional program representations
with unconstrained function sets. Here we show how evolved
programs expressed in the stack-based Push programming
language can be automatically and reliably simplified using a
simple, stochastic hill-climber. We demonstrate and quanti-
tatively characterize this simplification process on programs
evolved to solve four non-trivial genetic programming prob-
lems with qualitatively different function sets.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

Keywords
genetic programming, simplification, Push

Simplifying Evolved Programs
In some application areas the usefulness of genetic program-
ming (GP) hinges on the conciseness of the programs that
it produces. The issue of program size has recently become
even more significant with the development of new GP ap-
proaches based on “geometric semantic” program transfor-
mations [2], which show promise in terms of problem solving
power but may produce enormous programs.

GP systems that evolve programs in a minimal-syntax lan-
guage permit particularly simple forms of automatic simpli-
fication that can nonetheless be highly effective, even with

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598414.

programs involving arbitrary types and function sets. We
demonstrate this point by showing how programs evolved
in the minimal-syntax Push programming language [5, 4]
can be effectively and automatically simplified by means of
a trivial hill-climbing simplification algorithm. The demon-
strations here all begin with correct programs produced by
successful genetic programming runs.

The simplification algorithm that we use here takes as
input a program to simplify, a fitness function (which pro-
duces a vector of fitness values, one for each fitness case),
and a number of simplification steps. It attempts to sim-
plify the program step by step, for each step proposing a
simplification to the current simplest program (which is ini-
tially the input program) and testing the new, simpler pro-
gram’s fitness. In 80% of steps we remove either one or
two randomly selected “things” from the program, where
single instructions, literals, and parenthesized sub-programs
all count as single “things.” In the remaining 20% of steps
we flatten (remove all internal parentheses from) a randomly
selected thing. Because there is essentially only one syntax
rule in Push—that parentheses must be balanced—the pro-
grams that result from these steps will always be syntacti-
cally valid. If the new program’s fitness vector is the same as
the original fitness vector then the new program is retained
as the current simplest program, but if the simplification
results in a changed fitness vector then the new program is
discarded. This process is repeated for the specified number
of steps, and then the final simplest program is returned as
the result of the simplification process.

On each of four problems—the 3-bit digital multiplier
problem [6], the Pagie-1 symbolic regression problem [3],
the wc (word count) problem [1], and the odd problem [5]—
we gathered a number of evolved solutions of differing sizes,
and used the simplification algorithm to reduce their sizes
multiple times. In the results shown in Figures 1-4, gray
triangles indicate evolved program sizes, sorted by size. Be-
low each gray triangle is the median simplified program size
from 100 independent simplification runs, each of which ran
for 10,000 steps, on the corresponding program. Error bars
mark the minimum and maximum simplified program sizes.

Overall, we found this technique to efficiently and reliably
reduce the size of the evolved programs across four quali-
tatively different problems involving widely varying instruc-
tion sets and genetic programming parameters. It would be
interesting to study the use of the simplification algorithm
presented here during, rather than just after, evolution. In
fact the Clojush system used for these experiments includes
a built-in genetic operator that runs this simplification algo-

147



0

250

500

750

1000

0 25 50 75 100

Program Number

P
ro

g
ra

m
 S

iz
e

Starting Size

Median Simplified Size

Figure 1: Results: 3-bit digital multiplier problem.

0

100

200

300

0 10 20 30

Program Number

P
ro

g
ra

m
 S

iz
e

Starting Size

Median Simplified Size

Figure 2: Results: Pagie-1 problem.

0

100

200

300

400

500

0 10 20 30

Program Number

P
ro

g
ra

m
 S

iz
e

Starting Size

Median Simplified Size

Figure 3: Results: wc (word count) problem.

0

10

20

30

40

50

0 25 50 75 100

Program Number

P
ro

g
ra

m
 S

iz
e

Starting Size

Median Simplified Size

Figure 4: Results: odd problem.

rithm on selected parents to produce children. This feature
has been used before in various contexts, but no systematic
study has yet been conducted on the effects that this op-
erator has on evolutionary dynamics or on problem-solving
success.

1. ACKNOWLEDGMENTS
This material is based upon work supported by the Na-

tional Science Foundation under Grants No. 1017817 and
1129139. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation.

2. REFERENCES
[1] T. Helmuth and L. Spector. Word count as a

traditional programming benchmark problem for
genetic programming. In GECCO ’14: Proceedings of
the sixteenth international conference on Genetic and
evolutionary computation conference, Vancouver, 2014.

[2] A. Moraglio, K. Krawiec, and C. G. Johnson.
Geometric semantic genetic programming. In Parallel
Problem Solving from Nature, PPSN XII (part 1),
volume 7491 of Lecture Notes in Computer Science,
pages 21–31, Taormina, Italy, Sept. 1-5 2012. Springer.

[3] L. Pagie and P. Hogeweg. Evolutionary consequences of
coevolving targets. Evolutionary Computation,
5(4):401–418, Winter 1997.

[4] L. Spector, J. Klein, and M. Keijzer. The push3
execution stack and the evolution of control. In
GECCO 2005: Proceedings of the 2005 conference on
Genetic and evolutionary computation, volume 2, pages
1689–1696, Washington DC, USA, 25-29 June 2005.
ACM Press.

[5] L. Spector and A. Robinson. Genetic programming and
autoconstructive evolution with the push programming
language. Genetic Programming and Evolvable
Machines, 3(1):7–40, Mar. 2002.

[6] J. A. Walker and J. F. Miller. The automatic
acquisition, evolution and reuse of modules in cartesian
genetic programming. IEEE Transactions on
Evolutionary Computation, 12(4):397–417, Aug. 2008.

148




