
The Structure of an 8-state Finite Transducer
Representation for Prisoner’s Dilemma

Jeffrey Tsang
Department of Mathematics & Statistics

University of Guelph
Guelph, ON, Canada

jeffrey.tsang@ieee.org

ABSTRACT
The fingerprint operator generates a representation-indepen-
dent functional signature of a game-playing strategy, which
enables the automated analysis of evolved agents. With this,
we attempt to study the structure of a relatively small rep-
resentation — the 8-state finite transducers for Prisoner’s
Dilemma. Even then, there are almost 3 × 1020 strategies
representable, and hence we sample 32,768 strategies uni-
formly at random for investigation. Accounting for pheno-
typic duplicates, there are 31,531 distinct strategies in the
dataset; we compute all pairwise distances and use a vari-
ety of dimensionality reduction techniques to embed it into a
manageable space. Results indicate no obvious cutoff scales,
and a strong structural similarity with parallel studies on the
entirety of even smaller state spaces.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation—deterministic finite transducers; I.2.1 [Arti-
ficial Intelligence]: Applications and Expert Systems—
games

1. INTRODUCTION
[2, 1] presented the concept of fingerprinting, which turns

arbitrary game-playing strategies into normal mathemati-
cal functions independent of representation by recording the
strategy’s average behaviour against a reference opponent.
The model was updated in [4], improving upon several lim-
itations; from [6], a metric has been defined on the space
of fingerprints, which allows mathematical quantification of
the distance between particular strategies.

Using the fingerprint metric, we investigate here a space
of strategies that is just large enough to be used in actual
studies, the 8-state automata. Since the space is too large
to analyze exhaustively, we will use sampling and dimen-
sionality techniques to consider the global structure (in the
genotype space) imposed by the fingerprint distance (as phe-
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notypic differences). For background on the fingerprint op-
erator, see [4]; for the definition of the fingerprint distance
and computational methodology, see [6].

2. EXPERIMENTAL DESIGN
We shall consider a deterministic 8-state finite transducer

representation for playing iterated Prisoner’s Dilemma, as
a linear string of 34 integers: the transition (0–7) and the
action (C/D), for 17 conditions — the initial move, and in
each state, responding to the opponent’s C or D. We take a
sample of size 32,768 uniformly at random for analysis.

After combining all duplicates, there are 31,531 unique
strategies in the sample; each was fingerprinted at α = 0.8,
a value found in previous studies to have good separation
properties [5]. Pairwise distances are computed numerically
and hierarchical clustering with the unweighted pair group
with arithmetic mean method (UPGMA) is performed on
this 31, 531 × 31, 531 distance matrix. We pick a level of
12,800 clusters and use that (weighted) distance matrix for
analysis. Metric multidimensional scaling is used to embed
these clusters into Euclidean space, with the stress majoriza-
tion SMACOF algorithm [3], using the best fit chosen from
over 1,000 runs starting at initial points i.i.d. uniformly ran-
dom in [0, 1]n. The algorithm is further repeated for embed-
ding the data into anywhere from 1 to 10 dimensions.

3. RESULTS
The RMS error of embedding the distances, normalized by

the RMS of the distances themselves (0.277029), is known as
Kruskal’s STRESS. Stress below 0.05 is considered good; our
stress for embedding into R2 is 0.11043, into R3 is 0.05888,
into R5 is 0.02789, into R10 is 0.02123. We conclude the
data is mostly 5-dimensional, as further dimensions improve
the embedding by a negligible amount.

We take the best-fit R10 MDS embedding of the distances
and rotate it to principal coordinates; this is displayed as
12,800-point scatterplots in the top 3 components in Fig-
ure 1. A successful RGB colouring scheme, based on the
expected single-round reactive strategy distribution used by
the automata themselves, was developed in [6]; we will use
this to colour each cluster.

The first major observation from the plots is that the
colouring scheme is clearly reflected in the position of the
points: there is a strong correlation with the colour green
with the positive 1st component, red with negative 1st PC,
blue with positive 3rd PC and black with negative 3rd PC.
The two connected components in the 2nd component par-
tition the strategies based on their initial move.
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Figure 1: Scatter plot of all 32,768 strategies, reduced to 12,800 clusters with UPGMA hierarchical clustering,
projected into 10 dimensions with metric MDS. Point size (area) is directly proportional to cluster size; for
colouring see Section IV-B in [6]; axes are rotated to principal components, positive orientation is arbitrary.
Top: plot of component 1 vs 2. Bottom: plot of component 1 vs 3.

Note also that the largest 8 clusters, which directly corre-
spond to each of the 1-state strategies, form corners in the
space. From the combination of the two figures, it is clear
they are on the edges of the space, even if not in the di-
mensions reflected individually — this also means that the
dimensions happen to separate different pairs of these strate-
gies, further confirming their importance.

4. PREDICTING THE COORDINATES
Even though the representation is drastically larger, by

comparison with [4] we can see a high similarity in struc-
ture. We thus test the hypothesis therein that the principal
components in the embedded clusters correspond to cooper-
ativity (probability of cooperating minus that of defecting),
responsiveness (the correlation between your move and your
opponent’s last move) and initialism (difference in coopera-
tivity in the first move vs. later moves).

We can write down predictors for the coordinate positions
of the clusters using the colour components as defined in
[6]. For cooperativity, we use the function Green − Red
(bounded between -1 and 1), for responsiveness the predictor
Blue − Black. As to initialism, we separate out the initial
move, creating a fifth “colour” corresponding to whether the
automaton cooperates on the initial move. A scaling factor
of (1 +α)(Green−Red)∓α (depending on the initial move)
was used to correct for the unequal weight of these moves.

Testing with the 10-D MDS embedding, the Pearson cor-
relation (bounded in [-1,1]) between Green − Red and the
first principal component of the points is 0.996790, between

Blue − Black and the third component 0.881563, between
the initialism predictor and the second component 0.991127.
As 1 indicates a perfect linear relationship, these values are
incredibly high; thus the predictors are quantitative expla-
nations of the principal components.
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