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ABSTRACT
In this paper, we proposed a convergence speed controller
(denoted as CSC) framework to improve the performance of
differential evolution for continuous optimization problems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization

Keywords
convergence speed controller; differential evolution; locally
optimal

1. SUMMARY
In this paper, we introduced a DE algorithm with con-

vergence speed controller (CSC) framework for continuous
optimization problem, which can generally avoid premature
convergence. According to the cosine similarity and the rela-
tive fitness error between two randomly selected individuals
from the DE population, CSC provides a period strategy to
detect whether the DE stagnates local optimums. Once the
cosine similarity and fitness values are out of the threshold
bound, CSC will regenerate the population on the basis of N
top ranking individuals (denoted as topN) to protect the DE
from premature convergence. Moreover, CSC implements a
mechanism for unimproved individuals, which will regener-
ate the individual on the basis of the best-so-far individual,
to accelerate the convergence velocity of the target individ-
ual. The test results of 25 standard numerical benchmark
functions reveal that the proposed algorithm outperforms
three other DE algorithms.

2. THE CSC-DE ALGORITHM
The pseudo code of CSC-DE is illustrated by Table 1.
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Table 1: the pseudo code of CSC-DE
{xi . . . i-th individual of population}
{MaxIte . . . maximum number of Iterations }
{xbest . . . the best-so-far solution}
Initialization()
for ite = 0; ite < MaxIte; ite = ite+ 1 do

{**Update the topN**}
{**Perform one iteration of the DE**}
if condition1 is met then

Run Rule1: renew x1, x2, . . . , xNP to slow down
the convergence speed;

end if
if condition2 is met then

Run Rule2: renew the stopping individual xi to
accelerate the convergence speed;

end if
Update xbest

end for

2.1 Initialization
CSC-DE starts with a population of NP D-dimensional

individuals within the search space constrained by the pre-
scribed minimum and maximum bounds
�Xmin = [x1,min, x2,min, · · · , xD,min] and
�Xmax = [x1,max, x2,max, · · · , xD,max]. The initial value of
the j-th component of the i-th individual at generation G=0
as

xi,j,0 = xj,min + rand(0, 1) · (xj,max − xj,min) (1)

where rand(0, 1) is a uniformly distributed random variable
within the range [0, 1].

2.2 History information based topN updating
In order to record the information during the optimiza-

tion process, we designed a set named topN which contains
N excellent individuals. Moreover, to make all the individ-
uals in topN cover a wide search space, the cosine similar-
ity between any two individuals in topN is set to less than
sim(sim is a threshold). Given two individuals xa and xb,
their cosine similarity is calculated by Expression (2).

cos(xa, xb) =

∑D
j=1 xa,j · xb,j√∑D

j=1 x
2
a,j ·

√∑D
j=1 x

2
b,j

(2)
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Once CSC-DE detects out that DE falls into a local min-
ima possibly, it can generate a new population according to
the information of the individuals in topN .

2.3 Condition 1 and Rule 1
One of the most accepted idea to detect convergence is

that individuals of the entire population are very similar in
position and fitness to each other. Therefore, we use cosine
similarity and the ratio of two randomly selected individu-
als for the convergence condition. Hence, the condition of
convergence detection (condition 1 in Table 1) is designed as
Expression (3).The condition of convergence detection (con-
dition 1 in Table 1) is designed as Expression (3).

{
cos(xa, xb) > sim
|f(xa)−f(xb)|

f(xa)
< dif

(3)

where sim and dif are threshold values. Index a ∈ {1, . . . , NP}
and b ∈ {1, . . . , NP} are randomly chosen integers(a �= b).

2.4 Condition 2 and Rule 2
Rapid convergence to better solution is regarded as an

advantage of DE. Besides Rule 1 plays a role as convergence
speed slower, an acceleration of convergence speed is also
necessary to make CSC more heuristic and robust. For the
acceleration, Rule 2 will be implemented when condition 2 is
satisfied. As can be seen from the process of DE algorithm,
it may happen that an individual unchanged after a number
of iterations. This may slow down the convergence of the
algorithm. Therefore, condition 2 is presented as

ti > τ (4)

where the range of index i is {0, . . . , NP}. ti denotes the
number of consecutive iterations that the ith individual has
not been improved. And τ is a threshold value.

3. EXPERIMENTS AND RESULTS

3.1 Algorithms Compared and Parametric
Set-up

CSC-DE algorithm is tested with twenty-five test prob-
lems from CEC-2005 benchmark functions[1]. The perfor-
mance of the CSC-DE algorithm is compared with the
DE/current-to-best/1/bin[2], JADE [3] and MDE ρBX [4].
To make the comparison fair, we adopt the best parameter
settings from their respective literature.

3.2 Results on Numerical Benchmarks
Tables 5 show the mean and the standard deviation of

the best-of-run errors for 25 independent runs of each of the
four algorithms on 25 benchmark benchmarks. As can be
seen, CSC-DE defeated DE/current-to-best/1/bin in almost
all functions but f24 and f25. In short, these simulation
results show that CSC-DE can greatly improve the original
algorithm’s global convergence ability and running accuracy.
Compared to all other algorithms, CSC-DE managed to win
on 17 functions. It is competitive compared to state-of-the-
art algorithms
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Table 2: MEAN AND STANDARD DEVIATION
OF VALUES OBTAINED FROM DE/current-to-
best/i/bin, JADE, MDE ρBX AND CSC-DE ON
2005 BENCHMARKS WITH D=30.

DE/current-
to-best/i/bin

JADE MDE ρBX CSC-DE

f01
0.00E+00

(0.00E+00)
0.00E+00

(0.00E+00)
0.00E+00

(0.00E+00)
0.00E+00

(0.00E+00)

f02
2.21E-07

(1.858E-07)
1.02E-26

(8.42E-27)
2.40E-08

(8.21E-08)
1.79E-27

(5.10E-28)

f03
2.55E+05

(2.05E+05)
1.03E+04

(7.07E+03)
1.20E+06
(384621.9)

5.37E+04
(39797.17)

f04
0.010474

(0.011039)
1.72E-09

(5.60E-09)
1.16E+00

(1.65E+00)
1.26E-11

(5.21E-11)

f05
3.76E+01

(4.42E+01)
1.19E-07

(4.17E-07)
2.86E+03

(4.72E+02)
3.03E+01

(3.00E+01)

f06
9.57E-01

(1.73E+00)
9.35E+00

(2.55E+01)
5.43E+04

(1.50E+05)
2.05E-06

(7.08E-06)

f07
5.91E-03

(0.007621)
5.63E+03

(5.60E+03)
1.06E+01

(1.98E+01)
1.18E-03

(3.34E-03)

f08
2.10E+01
(4.32E-02)

2.08E+01
(1.93E-01)

2.09E+01
(4.76E-02)

2.00E+01
(1.54E-02)

f09
1.14E+02

(6.11E+01)
0.00E+00

(0.00E+00)
1.28E+01

(3.63E+00)
1.14E+01

(4.33E+00)

f10
1.92E+02

(1.73E+01)
2.56E+01

(4.32E+00)
2.94E+01
(14.1601)

4.23E+01
(12.526)

f11
3.94E+01

(1.82E+00)
2.51E+01

(1.54E+00)
2.58E+01

(6.08E+00)
4.24E+00

(1.48E+00)

f12
9.69E+05

(1.03E+05)
6.51E+03

(4.76E+03)
1.14E+04

(8.77E+03)
5.86E+03

(6.95E+03)

f13
1.56E+01

(1.13E+00)
1.44E+00
(1.47E-01)

2.98E+00
(6.75E-01)

2.83E+00
(4.56E-01)

f14
1.39E+01
(1.37E-01)

1.21E+01
(4.27E-01)

1.21E+01
(1.02E+00)

1.18E+01
(2.74E-01)

f15
3.64E+02
7.95E+01

3.21E+02
(9.70E+01)

3.20E+02
(5.79E+01)

2.39E+02
(2.72E+01)

f16
2.40E+02
1.01E+02

1.16E+02
(1.40E+02)

7.74E+01
(9.99E+01)

5.18E+01
(7.91E+00)

f17
2.80E+02
9.34E+01

1.87E+02
(1.03E+02)

1.71E+02
(2.03E+02)

1.67E+02
(1.51E+02)

f18
8.97E+02
2.88E+01

9.04E+02
(1.37E+00)

9.15E+02
(5.17E+00)

8.77E+02
(4.90E+01)

f19
8.95E+02
3.20E+01

9.04E+02
(1.80E-01)

9.14E+02
(3.68E+00)

8.00E+02
(3.58E-02)

f20
8.93E+02
3.47E+01

9.04E+02
(6.10E-01)

9.11E+02
(2.33E+01)

8.64E+02
(5.33E+01)

f21
5.00E+2
(00E+00)

5.00E+02
(1.74E-01)

5.01E+02
(4.81E+00)

5.00E+02
(8.20E-03)

f22
9.21E+02
9.49E+00

8.56E+02
(1.49E+01)

9.02E+02
(1.33E+01)

8.74E+02
(3.70E+01)

f23
6.16E+02
1.63E+02

5.34E+02
(1.60E-01)

5.34E+02
(3.46E-01)

5.34E+02
(1.27E-03)

f24
2.00E+02
(00E+00)

2.00E+02
(1.53E+02)

2.00E+02
(9.17E-05)

2.00E+02
(9.10E-03)

f25
2.10E+02
5.90E-01

1.27E+03
(1.20E+01)

2.01E+02
(3.61E+00)

2.11E+02
(9.94E-01)
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