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ABSTRACT
The paper presents a parallel implementation of a variant of quan-
tum inspired genetic algorithm (QIGA) for the problem of com-
munity structure detection in complex networks using NVIDIA R©
Compute Unified Device Architecture (CUDA R©) technology. The
paper explores feasibility of the approach in the domain of com-
plex networks. The approach does not require any knowledge of
the number of communities beforehand and works well for both
directed and undirected networks. Experiments on benchmark net-
works show that the method is able to successfully reveal commu-
nity structure with high modularity.

Categories and Subject Descriptors
B.2 [ARITHMETIC AND LOGIC STRUCTURES]: Design Style—
Parallel; D.2.2 [ Design Tools and Techniques]: [Top-down pro-
gramming]
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1. INTRODUCTION
A network is a system of interconnected entities in a domain and

is used to represent relationships between these entities. Many of
the complex networks of interest such as online social networks,
WWW, and biological networks are too large to be handled by tra-
ditional computing architectures. Further, many of these networks
can be considered as complex networks characterized by collective
behavior that does not follow trivially from the behaviors of the in-
dividual entities in the network [6]. One such behavior is hierarchi-
cal structure in the network, the networks at the lower level of hier-
archy (sub-networks) being popularly termed as communities. The
complex network analysis is both computationally and memory in-
tensive and is thus well-suited for parallel programming paradigm.
In this paper, we present a parallel implementation of a variant of
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QIGA [4] for community structure detection in complex networks.
The proposed approach employs a top-down bi-partitioning strat-
egy to optimize network modularity [8], deploying a QIGA at each
level of the hierarchy. The algorithm is implemented on NVIDIA’s
massively parallel Compute Unified Device Architecture (CUDA)
technology, one of the leading general-purpose parallel computing
architectures, and employs single-population fine-grained parallel
evolutionary approach[1].
The proposed algorithm maintains a population of quantum chro-
mosomes, where the size of the chromosome equals the number
of nodes in the graph. An n-qubits chromosome can represent 2n

states at the same time but each qubit collapses to a single state 0
or 1 when measured, resulting in a classical binary chromosome.
In each generation of the algorithm, the measurement of each qubit
generates a classical bit probabilistically based on its state of super-
position and is followed by an application of mutation and quantum
rotation gate as variation operators. The lookup table for quantum
rotation gate is as given by Han and Kim in [4] with,

θ1=θ7=0, θ2=θ4=−θ6=θ8=0.001, θ3=−θ5=0.038.
For example, for a 12-node network, consider the following 12-
qubit chromosome,
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where the probability of occurrence of state 0 in the first qubit is 5/6
and of state 1 is 1/6. This chromosome, when measured, may yield
a binary chromosome such as

0 1 1 1 0 0 1 1 0 1 1 0 .
All the nodes in the graph are initially assigned to the same com-
munity 0 (assuming that the community IDs to be assigned are 0,
1, . . . ) and the first bi-partitioning step divides the network into
two communities 0 and 1. In this context, the values 0 and 1 in the
above chromosome may be interpreted as community IDs associ-
ated with the corresponding nodes. That is, nodes 1, 5, 6, 9, and
12 belong to the community 0 while nodes 2, 3, 4, 7, 8, 10, and 11
belong to the community 1. The existing communities are repeat-
edly bi-partitioned in a depth first manner. That is, in the example,
at the next level in bi-partitioning, nodes in community 0 are split
into communities 0 and 2, while nodes in community 1 (assuming
that communities 0 and 2 cannot be split further) are split into com-
munities 1 and 3, and may yield a chromosome such as

2 3 1 1 0 0 1 3 2 3 1 2 .
The fitness function (network modularity) is computed after every
partitioning. The partitioning that increases the modularity is ac-
cepted. The process terminates when no further increase in the
modularity is possible.
The algorithm is implemented in CUDA C assigning each element
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Figure 1: Communities and sub-communities identified in (a)
Zachary karate club network and (b) Lusseau dolphins social net-
work using the proposed algorithm. Vertex colour indicates com-
munity membership in the final partition. Vertex shape represents
the principle division into two communities

.

(qubit) of the chromosome to a separate thread. A chromosome
may then be spread over multiple blocks in a grid. Each of the
functions of QIGA- initialize, measure, mutate, update, and fitness
function (modularity) evaluation, are implemented as GPU kernels.

2. EXPERIMENTAL RESULTS
We have applied the proposed algorithm on real-world bench-

mark datasets (Figure 1)- Zachary karate club network [12] and
Lusseau dolphins network [5]. Table 1 shows the comparison of
the modularity value results of the proposed algorithm with those of
Newman-Fast [7], GN-Fast [8], CNM [2], Walktrap [10], DA [3],
GATB [11], and MOGA-Net [9] algorithms. Karate club network
has two groups in the original partition centered on nodes 1 and 33.
If we cut the dendrogram generated by the proposed solution strat-
egy at two communities, we obtain a modularity value of 0.3718,
higher than 0.36 of the original structure. Only nodes 3 and 10 are
misclassified. It is worth noting that node 3 is linked to the prin-
cipal nodes 1 and 33, and links to equal number of nodes in both
communities of known partition. It is therefore possible for node 3
to get placed in any community. Also, node 10 is linked to only two
nodes, one being node 3, and is placed in the same community as
that of node 3 in both original and found partition. The algorithm
finally splits the network into 4 communities with the maximum
modularity value of 0.4188. Dolphins network has two groups in
the original partition. If we cut the dendrogram generated by the

Table 1: Comparison of the modularity (Q) values.

Algorithm Zachary Dolphin
PQG-CD .4188 .5268

Newman-Fast .3807 .4955
GN-Fast .4013 .519

CNM .381 .515
Walktrap .394 .517

DA .4188 .5264
GATB .402 .52

MOGA-Net .416 .505

proposed solution strategy at two communities, we obtain a modu-
larity value of 0.4015, higher than 0.4004 of the original structure.
Only nodes 40, 54, and 62 are misclassified. It is worth noting that
all the three nodes are in the same community in both known and
found partitions. The algorithm further splits the two communities
found and terminates with a maximum modularity of 0.5268.
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