
Darwin: A Ground Truth Agnostic CAPTCHA Generator
Using Evolutionary Algorithm

Eric Y. Chen, Lin-Shung Huang, Ole J. Mengshoel, and Jason D. Lohn
Carnegie Mellon University

{eric.chen, linshung.huang, ole.mengshoel, jason.lohn}@sv.cmu.edu

ABSTRACT
We designed and implemented Darwin, the first CAPTCHA
generator using evolutionary algorithm. We evaluated the
effectiveness of our proposed CAPTCHAs with MTurk users
(non-attackers) and Antigate workers (attackers). Due to
our ground-truth agnostic fitness function, we are able to
discover a new category of CAPTCHAs in which attackers
answer correctly but non-attackers answer incorrectly.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
CAPTCHA, Evolutionary Algorithm, Mechanical Turk

1. INTRODUCTION
CAPTCHAs (Completely Automated Public Turing tests

to tell Computers and Humans Apart) [4] are tests designed
to differentiate human beings from computers. CAPTCHAs
are commonly used to protect websites against abusive bots
that run automated tasks over the Internet, such as posting
spam on message boards, creating fraudulent accounts or
sending votes to online polls. While the state-of-the-art, re-
CAPTCHA [5], can be effective against OCR-based bots [1],
existing CAPTCHAs were not designed to prevent attackers
that actually employ cheap human labor overseas to solve
the tests (e.g., Antigate.com). In this work, we generate
CAPTCHAs that are effective in distinguishing Antigate
workers (attackers) from MTurk users (non-attackers). Our
hypothesis is that Antigate workers (attackers) are more
experienced in solving CAPTCHAs than average MTurk
users (non-attackers), and may solve CAPTCHAs differ-
ently (e.g. characteristically higher accuracy). We built
a system called Darwin based on evolutionary algorithm to
find CAPTCHAs that effectively differentiate attackers (em-
ployed by CAPTCHA solving services) from non-attackers

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598413.

Figure 1: The Darwin system generates CAPTCHA images
from random text strings by applying a set of image process-
ing filters. Each CAPTCHA image is evaluated by MTurk
users (non-attackers) and professional solvers (attackers) via
Antigate.com to find effective filters and parameters.

(recruited over MTurk [3]). Interestingly, our Darwin system
not only generated CAPTCHAs that MTurk users would
solve correctly and Antigate workers would solve incorrectly,
but also discovered a new category of ground-truth agnos-
tic CAPTCHAs. Ground-truth agnostic CAPTCHAs are
interesting because attackers would answer them correctly
(and fail the test) but non-attackers would answer incor-
rectly (and pass the test, counterintuitively).

2. DARWIN SYSTEM ARCHITECTURE
Our system Darwin generates CAPTCHAs by passing ran-

domly generated text strings (as the solution) through a se-
ries of image processing filters to render a distorted image of
the random string (as the test). The architecture of Darwin
is illustrated in Figure 1. Darwin learns how to generate
effective CAPTCHAs by using an evolutionary algorithm;
each genotype in the population is a binary string representa-
tion of a specific combination of image processing filters and
their corresponding parameters (the phenotype). At each
generation, Darwin generates a corpus of new CAPTCHA
images based on the phenotypes in the population and eval-
uates the fitness of each CAPTCHA. Lastly, individuals are
selected based on their fitness values to produce offsprings
through mutation (rate=0.1) and cross-over (rate=0.8) op-
erations, and then passed on to the next generation.

Phenotype and Genotype. We utilized a number of im-
age processing filters listed below (in four main groups):
(1) font properties: font, font size, font color, character
spacing, character rotation, vertical displacement, (2) im-
age properties: width, height, transparency, background

165



(a) Type 1 (19%): MTurk users
and Antigate users both correct.

(b) Type 2 (22%): MTurk users
correct, Antigate users incorrect.

(c) Type 3 (6.6%): MTurk users
incorrect, Antigate users correct.

(d) Type 4 (52%): MTurk users
and Antigate users incorrect.

Figure 2: Four different types of CAPTCHAs with samples images generated by Darwin.

color, (3) visual effects: Gaussian blur, grayscale, and (4)
random noise: pixels, lines, circles. Each image process-
ing filter is configurable through certain parameters. For
example, the angle parameter for the “character rotation”
transformation filter is a number between 0 and 360.

Fitness Evaluation. Unlike most existing evolutionary
algorithms, Darwin’s evaluation function is not a computer
program, but rather real users from MTurk and Antigate
(an online CAPTCHA solving service). The fitness value
is calculated from the result of real user tests, providing
a qualitative measurement of the individual’s genotype for
deciding whether this individual will carry on to the next
generation. The fitness function is:

∑N
i=1 Lev(Mi, Ai)

N [1 + LevAvg(Mi..N ) + LevAvg(Ai..N)]
(1)

where N is the number of different CAPTCHAs generated
for each individual. Mi and Ai represents the user’s answer
for the ith CAPTCHA from MTurk and Antigate, respec-
tively. Lev(A,B) represents the Levenshtein distance be-
tween string A and B. That is, the minimum number of
single-character edits required to transform one string into
the other; and LevAvg(S) represents the average Levenshtein
distance between a set of strings S. In layman’s terms, our
fitness function is the average difference between MTurk
user’s answers and Antigate worker’s answers, divided by
the consistency of their answers.

One important observation about our fitness function is
that it is ground-truth agnostic. That is, we need not
assume that a CAPTCHA must be solved correctly by non-
attackers. In other words, an effective CAPTCHA could
possibly be intentionally difficult for non-attackers (MTurk
users) to solve correctly, as long as we can distinguish their
results from attackers (Antigate workers).

Diversity Maintenance. To introduce diversity into our
populations, we employed the Age-Layered Population Struc-
ture (ALPS) [2] technique. The basic idea of ALPS is to di-
vide the population into multiple sub-populations (or layers)
based on their age. At random intervals, Darwin introduces
new, randomly generated individuals into the youngest layer.
As they age, individuals move from layer to layer but may
be out-competed by individuals of similar age. To keep our
total population size constant, we set a maximum layer num-
ber (3 in our evaluation) where individuals from the oldest
layer always compete in a free-for-all manner. The advan-
tage of using this technique is that it gives newly created
individuals time to evolve and fine-tune themselves before
competing with more fit individuals.

3. EVALUATION AND DISCUSSION
We ran Darwin for 50 generations and evaluated a to-

tal of 5250 CAPTCHAs. Based on evaluation results, we
categorized CAPTCHAs into four different types (with ac-
tual images) shown in Figure 2. Type 1 CAPTCHAs are
solved correctly by both MTurk users and Antigate workers.
Type 2 CAPTCHAs are solved correctly by MTurk users
but incorrectly by Antigate workers. Type 3 CAPTCHAs
are solved correctly by Antigate workers but incorrectly by
MTurk users. Finally, Type 4 CAPTCHAs are solved incor-
rectly by users from both platforms. To select CAPTCHAs
that are suitable for real world usage, we recorded 300 in-
dividuals with the highest fitness values that we refer to as
elites. Each of these individuals generated 2 CAPTCHAs.
We eliminated all elites that generated a Type 1 or Type 4
CAPTCHA. In addition, we eliminated all elites that gener-
ated inconsistent CAPTCHAs (e.g., one CAPTCHA is Type
2 while the other is Type 3). Out of the four types, Type 1
and Type 4 are less valuable to us. Type 2 is considered to be
“ideal”under the current CAPTCHA paradigm because non-
attackers (MTurk users) solved them correctly while attack-
ers (Antigate workers) solved them incorrectly. Type 3 is the
special case of ground-truth agnostic CAPTCHAs that our
attackers solved correctly while non-attackers didn’t. Hence,
when using Type 3 CAPTCHAs, websites must reject users
who answered them correctly (which is counterintuitive). In
real world deployment scenarios, we advise developers to use
a mixture of Type 2 and Type 3 CAPTCHAs.

4. REFERENCES
[1] E. Bursztein, M. Martin, and J. C. Mitchell.

Text-based CAPTCHA strengths and weaknesses. In
Proceedings of the ACM Conference on Computer and
Communications Security, 2011.

[2] G. S. Hornby. ALPS: the age-layered population
structure for reducing the problem of premature
convergence. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2006.

[3] J. Ross, L. Irani, M. S. Silberman, A. Zaldivar, and
B. Tomlinson. Who are the crowdworkers?: shifting
demographics in mechanical turk. In Extended Abstracts
on Human Factors in Computing Systems, 2010.

[4] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In
Proceedings of EUROCRYPT, 2003.

[5] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and
M. Blum. reCAPTCHA: Human-based character
recognition via web security measures. Science, 2008.

166




