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ABSTRACT
In this paper, we describe a new real coded GA which may
be used to analyze the security of quantum key distribution
(QKD) protocols by estimating the maximally tolerated er-
ror rate - an important statistic and, for many newer more
complicated protocols, still unknown. Our algorithm takes
advantage of several nice features of QKD protocols to sim-
plify the search process and was evaluated on several pro-
tocols and can even detect security flaws in a protocol thus
showing our algorithm’s usefulness in protocol design.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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Quantum Computing; Quantum Key Distribution

1. THE ALGORITHM
A Quantum Key Distribution (QKD) protocol [6] allows

two users, referred to as Alice (A) and Bob (B), to agree on a
secret key (a string of random classical bits) which is secure
against even an all-powerful adversary (referred to as Eve,
E). QKD protocols have the nice property that one may
estimate the amount of information E holds on the secret
key by measuring the “noise” or error rate in the quantum
channel. In this paper we describe a new real-coded GA
which can estimate an upper-bound on the maximally tol-
erated quantum bit error rate (QBER) of a QKD protocol -
any noise level higher than this and E may hold too much
information to distill a secure secret key. While this value
is known for many protocols, some newer ones (especially
two-round protocols) do not yet have this value computed.
Since QKD protocols are implementable (and in use) with
today’s hardware, this is an important question.

These protocols typically work by first performing a quan-
tum communication stage where the two parties communi-
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cate by sending qubits over several independent iterations
(see [4] for information on quantum computation), each it-
eration divided into K ≥ 1 rounds. After this stage, A and
B each have a“raw key”- a string of classical bits from which
they perform an error correction (EC) and privacy amplifi-
cation (PA) protocol to distill a (shorter) secure secret key.
For more detailed information on this process, the reader is
referred to [6].

Our algorithm considers collective attacks in the asymp-
totic scenario [6] (where E uses the same strategy each itera-
tion - security in this setting usually implies security against
arbitrary attacks [3]) thus we need only consider a single iter-
ation of a QKD protocol. Eve’s attack consists of K unitary
operators {Ui}Ki=1 with Ur being used on round r. These
operators act on the qubit sent and Eve’s private ancilla.

In this scenario, to compute a bound on the maximally
tolerated QBER τQ, we will consider the key-rate of a QKD

protocol defined as: r := limn→∞
l(n)

n
, where l(n) is the

number of secure key bits generated by PA and n is the
number of iterations used by A and B (the number of qubits
sent). Clearly it is desired that r > 0. If r = 0, no se-
cret key may be generated. Since we are not considering
post processing, we may simplify the equation of [5] which,
assuming collective attacks, upper bounds r ≤ max(0, R)
where: R = min(S(A|E) − H(A|B))). Here, given ρABE ,
a density matrix describing a single iteration of the QKD
protocol, S(A|E) = S(ρAE) − S(ρE) is the conditional von
Neumann Entropy (see [4]); H(·|·) is the (classical) condi-
tional entropy; and the minimum is over all attack operators
{Ui}Ki=1 inducing a certain QBER τQ such that, for any ob-
served QBER larger than τQ, both parties abort.

We wrote a quantum simulator specific to this problem
which allows the user to describe, easily, a QKD protocol
(i.e., construct density matrix ρABE). The simulator also
allows us to easily “swap” in new attack operators to re-
compute R. Our system stores this density matrix descrip-
tion as a linked list, which we call a DensityList, of Ket-

Bra structures. Each KetBra represents a value of the form:
p |i1, i2, · · · , in〉 〈j1, j2, · · · , jn|, where p ∈ C (represented as
two double precision floating point values) and each ik are
integers between 0 and one less than the dimension of the
k’th subspace. These i’s and j’s represent either orthonor-
mal basis states or they may index arbitrary states which
we may define at a later time. For clarity in this paper, if
an index represents a basis state we will either write it as an
integer or denote with a non-e prefix (e.g., ik or aj); other-
wise, if it represents an arbitrary state, we will denote this
using an e prefix (e.g., er

ik
).
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We now describe the technique we use to compute UiρU
∗
i

where ρ is a DensityList. Let HT be the two-dimensional
“transit” space (modeling the sent qubit) and HE,r is Eve’s
private ancilla for round r. We assume, without loss of gen-
erality, that on round i, Ui acts only onHT⊗HE,1⊗· · ·⊗HE,i

and given ρ, the state of theHE,i subspace is“cleared”to the
basis state |0〉E,i. Let d0 = dimHT = 2 and dj := dimHE,i

for j = 1, 2, · · · ,K (these are, without loss of generality,

finite). Also, define D0 = 1 and Di≥1 =
Qi−1

j=0 dj .

If K = 1, U1 acts as: U1 |0〉 = |0, e10〉+ |1, e11〉 and U1 |1〉 =
|0, e12〉+ |1, e13〉 (these e states are not necessarily normalized
or orthogonal). For K > 1, we proceed inductively. At the
start of round r, before E applies Ur, assume that we have
a DensityList ρr−1 where each KetBra is of the form:

p |i0, · · · , ir−2, e
r−1
l , 0〉 〈j0, · · · , jr−2, e

r−1
m , 0| .

Note that all indices in this structure are orthonormal basis
states except for HE,r−1 which are non-basis states |er−1

l/m〉.
E now applies Ur which acts on basis states as follows:

Ur |a0, · · · , ar−1, 0〉 =
P

~k |~k〉 ⊗ fr(~a,~k), where the sum is

over all vectors ~k = (k0, k1, · · · , kr−1) with ki ∈ {0, · · · , di−
1}, ~a = (a0, · · · , ar−1), and fr(~a,~k) is a function mapping

the value (~a,~k) to a vector in HE,r. That is to say, fr(~a,~k)
represents a state vector (not necessarily normalized) in the
r’th subspace of E’s system (we will convert this to an “er”
state shortly). Unitarity of Ur requires:P

~k fr(~a,~k)∗ · fr(~a,~k) = 1, ∀ ~aP
~k fr(~a,~k)∗ · fr(~b,~k) = 0, ∀ ~a 6= ~b.

(1)

Of course ρr−1 contains non-basis states |er−1
j 〉. Choosing a

basis for HE,r−1 (the choice is irrelevant to entropy compu-
tations), we may write each |er−1

j 〉 as a vector: (αr−1
j,1 , αr−1

j,2 ,

· · · , αr−1
j,dr−1

)T . Thus:

Ur |a0, · · · , ar−2, e
r−1
j , 0〉

= Ur(
Pdr−1

l=1 αr−1
j,l |a0, · · · , ar−2, l − 1, 0〉

=
Pdr−1

l=1 αr−1
j,l

P
~k |~k〉 ⊗ fr(~a||l,~k)

=
P

~k |k〉 ⊗
Pdr−1

l=1 αr−1
j,l f(~a||l,~k),

where ~a||l = (a0, · · · , ar−2, l). If we define |er(j,~a,~k)〉 =P
l α

r−1
j,l f(~a||l,~k), then Ur sends state |a0, · · · , ar−2, e

r−1
j 〉

to
P

~k |k, e
r(j,~a,~k)〉. This process may be repeated for the

bra portion 〈·| of each KetBra (bras are the conjugate trans-
pose of kets). Thus, after choosing a suitable ordering i ↔
(j,~a,~k), which is straight-forward to do, we may equate the

state |er
i 〉 to the state |er(j,~a,~k)〉 and we have a DensityList

ρr which contains only basis states except for HE,r and may
therefore apply this process for round r + 1.

A candidate solution, which is a description of these K
unitary attack operators {Ui}, will consist of vectors of the
form: Gr(~a) = (gr(~a, 1), gr(~a, 2), · · · , gr(~a,Dr)), for all pos-
sible ~a as defined before, where each gr(~a, k) is a vector
of size dr for r = 1, 2, · · · ,K. Each element in these vec-
tors is a complex number represented by two double preci-
sion floating point values. The total number of variables is
2

PK
r=1 ·Dr ·Dr+1.

We then, individually for each r, orthogonalize these Gr(~a)
vectors using the Gram Schmidt process resulting in or-
thonormal vectors Fr(~a) = (fr(~a, 1), · · · , fr(~a,Dr)). It is
clear that, if we write each fr(~a, k) as a column vector (thus

corresponding to kets), they satisfy Equation 1. From this
we iteratively construct each |er

i 〉 (starting with r = 1).
To create an initial population of such operators, we use,

for X,Y ∈ [0, 1], the following distribution:

gr(~a,~k)[j] = 1− U(0, X) ~k = ~a, j = 0

gr(~a,~k)[j] = U(0, X) ~k = ~a, j > 0

gr(~a,~k)[j] = U(0, Y ) ~k 6= ~a, j ≥ 0

(2)

where the function U(0, X) chooses a complex number whose
real and imaginary components are drawn independently,
and uniformly from the interval [0, X]. Note if X = Y = 0,
all operators are the identity operator. We found choosing
X = Y = .25 produced good results in our evaluations.

Crossover is done using simple one-point crossover. Muta-
tion will alter 25% of the elements in Gr(~a) adding to the real
and imaginary components by a random x ∈ [−1/10, 1/10]
(choosing different random amounts for each component).
The fitness of a candidate solution is: fit(G) = 1

2
(Q− τ̃Q)2 +

1
2
(R+ .01)2 (we wish to minimize this function), where Q is

the induced QBER of the solution, R is the key rate (men-
tioned above - to compute this, we construct a density ma-
trix from the DensityList, and find its eigenvalues to com-
pute S(A|E); computing H(A|B) and Q from this matrix is
also straightforward), and τ̃Q is the target QBER. If we find
a solution {Ui} that induces a QBER of Q with a key rate
R < 0, we can upper-bound the maximal tolerated QBER
by this Q. Thus we want to find the smallest such Q.

We evaluated our algorithm on BB84 [1] where it found a
maximal QBER of .11118 (the theoretical maximum is .11
[3]). We also tested it on a “flawed” version of BB84 - this
insecurity was detected by finding a solution with Q close
to zero and R < 0. Finally, we tested it on a two-round
QDK protocol of [2]. Here it found a maximal QBER of .84.
This is a new result in QKD research. It was also able to
determine a modified version of this protocol was insecure.
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