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ABSTRACT
The extraction of weak signals from instrumental noise is a
critical task in ongoing searches for gravitational waves. A
detection and estimation method, made feasible by Particle
Swarm Optimization, is presented for a particularly chal-
lenging class of signals expected from astrophysical sources.

Categories and Subject Descriptors
G.1.1. [Interpolation]: Smoothing; G.1.2 [Approximation]:
Least squares approximation; G.1.6 [Optimization]: Global
Optimization; G.3 [Probability and Statistics]: Robust
Regression; J.2 [Physical Sciences and Engineering]:
Physics
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1. UNNT SIGNALS, METHOD AND RESULTS
Let x = (x(t0), x(t0+Δ), . . . , x(t0+(N−1)Δ)) ∈ R

N , with
Δ constant, represent a segment of gravitational wave (GW)
detector output. (See [6] for a review of GW astronomy.)
We have x = s + n and x = n, where n denotes a noise
realization, in the presence and absence respectively of a
GW signal s. In the following, n is drawn from a zero-mean
white Gaussian noise process with unit variance (WGN).

Fig. 1 shows the signals considered in this work. One is the
s11WW signal taken from a catalog of core-collapse super-
nova simulations [7]. The other, which we call the 4-Peaks
signal, is our ad hoc model for a signal from a long-lived
rotational instability. The signals have been normalized to
have a matched filtering signal to noise ratio (SNR) of 10,
where SNR2 = ‖s‖2 = ssT . Due to the narrowband and pos-
sibly nonstationary features in their spectrograms and the
fact that their waveforms are unpredictable for real sources,
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Figure 1: Panel (a) and (b) show (in white) the
s11WW and 4-Peaks signal respectively superim-
posed on data realizations containing the signals
(in gray). Panel (c) shows the spectrogram of the
s11WW signal in dB. The dashed white ellipse shows
a narrowband nonstationary feature.

such signals exemplify what we call Unmodeled Narrowband
Nonstationary Transient (UNNT) signals.

Motivated by the slow variation of their amplitude enve-
lope and instantaneous frequency relative to the instanta-
neous period of their carrier signal, we model UNNT signals
as follows. (Here, yk ≡ y(t0 + kΔ) for any y ∈ R

N .)

sk(α, γ, ω) =

M−3X
j=0

αjBj,k(γ) cos

„Z tk

t0

dt′f(t′; ω)

«
, (1)

where Bj(t; γ), j = 0, 1, . . . , M − 3 are the B-spline basis
functions [1] that span the space of cubic splines defined
by a given set of knots γ = (t0, γ1, . . . , γM , tN−1), M � N .
f(t; ω) is a linear spline with K � N knots, with ω denoting
the knots and the corresponding frequencies (∈ [0, fmax]).

We maximize the penalized log-likelihood ratio [2]

LLR(α, γ, ω; x) = ‖x‖2−‖x − s(α, γ, ω)‖2 + λ

M−3X
j=0

α2
j ,(2)
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Figure 2: Histograms of (a) the estimated ampli-
tude envelope, and (b) the instantaneous frequency
at each instant of time for the 4-peaks signal. The
true amplitude envelope is shown as the solid curve.

(i) analytically over α, under the constraints [3] αj ≥ 0,
j = 0, . . . , M − 3, and then (ii) numerically, using PSO [4],
over γ and ω. Prior to step (ii), λ is determined using gener-
alized cross validation [5]. Then D(x) = LLR(bα, bγ, bω; x) =
maxα,γ,ω LLR(α, γ, ω; x) is the detection statistic and bα, bγ
and bω are the point estimates of the signal parameters.

Simulation results are obtained for the following set up.
Data: N = 16384; Δ = 1/8192 sec. UNNT model: fmax =
800 Hz, M = 10 and K = 5. PSO: 40 particles; 800 itera-
tions; linearly decaying inertia from 0.9 to 0.4; ring topology
with neighborhoods of 3 particles; Particle velocity along
each coordinate ≤ 1/5 of the coordinate range; both the
acceleration constants = 2.0; ‘let them fly’ boundary condi-
tion. The dimensionality of the fitness function to be opti-
mized by PSO is M + 2K = 20.

D(x) is evaluated for the case x = n with 100 independent
realizations of n, and for x = s + n with 45 independent
realizations of n for each of the two signals (SNR=10 for
both) . The effective SNR of the method, defined as

(〈D(s + n)〉 − 〈D(n)〉)/stdev(D(n)) , (3)

where 〈X〉 is the sample mean of a random variable X and
stdev(X) its sample standard deviation, is found to be 14.1
and 9.8 for the 4-Peaks and s11WW signals respectively.
Since these values are comparable to the SNR for matched
filtering, the method is seen to perform well in the detection
of a wide range of signal morphologies without requiring any
change in its settings.

Figs. 2 and 3 show the estimated amplitude envelopes and
instantaneous frequencies for the case x = s+n. In the time
interval containing the signal, the instantaneous frequency
estimates are tightly clustered around the true values. (The
4-Peaks signal has a constant instantaneous frequency of
650 Hz.) In line with the Fisher matrix for monochromatic
signals, the estimation error is higher for the amplitude en-
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Figure 3: Histograms of (a) the estimated ampli-
tude envelope, and (b) the instantaneous frequency
at each instant of time for the s11WW signal. The
true amplitude envelope is shown as the solid curve.

velope than the instantaneous frequency. Nonetheless, in-
formation about the main peaks in the ampltiude envelope
is retrievable despite the strong dominance of noise over the
signal in the time domain (c.f., Fig. 1).

The results show that the method is promising. It is im-
portant to note that, due to the high-dimensional optimiza-
tion involved, the method would be computationally pro-
hibitive and, hence, infeasible without PSO.
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