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ABSTRACT
When designing a wind farm layout, we can reduce the num-
ber of variables by optimizing a pattern instead of consid-
ering the position of each turbine. In this paper we show
that, by reducing the problem to only two variables defining
a grid, we can gain up to 3% of energy output on simple
examples of wind farms dealing with many turbines (up to
1000) while dramatically reducing the computation time.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided de-
sign; D.2.2 [Software Engineering]: Design Tools and
Techniques—Computer-aided software engineering

Keywords
Wind Energy, Wind Farm Layout, Optimization

1. INTRODUCTION
In the last 15 years, the attempts to discover techniques

for efficiently installing wind farms both onshore and off-
shore have increased considerably; the recent review of Gon-
zalez [1] lists almost 150 bibliographic references for the op-
timal wind-turbine micro-siting problem.

In this paper, we use the park model [3] to compute wake
effects. The wake effects on a turbine i created by all tur-
bines j (j 6= i) change the wind resource available to i by
reducing the scale parameter c of the Weibull distribution
estimated for the entire farm, called the freestream wind re-
source. These effects depend on the relative location of the
j turbines from i. Thus, there exists a parameter ci for each
turbine i: its computation is complex and involves wind ve-
locity deficits V defij that the turbine i experiences due to
the influence of other turbines j. The simple evaluation of
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one configuration is thus quadratic with respect to the num-
ber of turbines. The algorithm that we use to compute the
wake effects is described in [4]. Among the best known re-
sults so far, Wagner [5] uses CMA-ES to place 1000 turbines,
but it takes weeks to solve the problem.

In this paper, we use the exact models and algorithms1

from [4] and show that using regular patterns optimized by
an evolutionary method outperforms current evolutionary
and deterministic methods: the computation times are de-
creased and the power output is improved on large instances
(over 200 turbines). We argue that when the number of
variables becomes too large, the ES gets stuck in local min-
ima whatever the computation time, thus rendering methods
with fewer variables more efficient. To prove our point, we
employ here a very simple regular pattern model using only
two variables.

α

δ

Figure 1: Windmill farm pattern modeling

2. MODELING AND OPTIMIZATION
[6] and [2] have already studied simple instances of small

windmill farms (< 100 windmills) placed on a grid.
Here, we define a simple windmill farm pattern with two

parameters to optimize the windmills’ positions on a field
such as that presented in [4] (see figure 1). α determines the
angle of the windmills’ alignment with the longest edge of
the field. δ measures the space between two lines of wind-
mills on the longest edge of the field. We set the n windmills
up as regularly as possible. A windmill is positioned at each
edge of the field. If n is the total number of windmills, l the
total length of the bold segments and ns the number of bold
segments, then the distance between two windmills is close

1We want to thank Sylvain Cussat-Blanc for giving us access
to the source code of [4, 7].
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size TDA TDA time GA GA time α δ gain DE DE time α δ gain
200k 200k +% +%
max mean max mean loss max mean loss

n e+05 e+05 min e+05 e+05 min opt opt -% e+05 e+05 min opt opt -%
10 0.7314 0.7309 13 0.7315 0.7314 6 810.14 0.4952 0.07 0.7315 0.7313 6 809.93 0.4951 0.05
20 1.449 1.448 30 1.456 1.454 2 789.71 0.5311 0.41 1.456 1.454 3 790.21 0.5309 0.41
30 2.144 2.135 45 2.164 2.162 2 746.27 0.0381 1.26 2.164 2.164 3 745.82 0.0381 1.36
40 2.806 2.791 61 2.814 2.808 3 919.46 0.5924 0.61 2.814 2.809 3 918.81 0.5920 0.64
50 3.418 3.412 77 3.461 3.461 3 745.07 0.7370 1.44 3.461 3.460 3 744.85 0.7369 1.41
60 4.022 4.011 95 3.988 3.954 4 692.07 0.7452 -1.42 3.988 3.984 4 691.87 0.7449 -0.67
70 4.591 4.555 111 4.449 4.443 5 566.51 0.7264 -2.46 4.449 4.446 4 566.21 0.7261 -2.39
80 5.108 5.090 129 4.925 4.921 7 499.77 0.6743 -3.32 4.924 4.919 5 499.38 0.6739 -3.36
90 5.625 5.609 151 5.450 5.419 7 431.46 0.7257 -3.39 5.450 5.441 6 431.32 0.7260 -3.00

100 6.113 6.083 170 5.863 5.796 6 395.30 0.6456 -4.72 5.862 5.819 6 395.03 0.6443 -4.34
200 13.25 13.23 404 13.59 13.59 16 727.00 0.6883 2.72 13.59 13.59 14 727.05 0.6882 2.72
300 19.73 19.71 678 20.25 20.24e 26 735.16 0.7411 2.69 20.25 20.25 23 735.13 0.7411 2.74
400 25.86 25.84 1020 26.66 26.65 39 722.81 0.6934 3.13 26.66 26.64 35 722.76 0.6932 3.10
500 32.51 32.49 1470 33.52 33.52 53 724.88 0.7399 3.17 33.52 33.50 50 724.75 0.7399 3.11
103 64.54 64.49 4500 66.69 66.68 166 709.31 0.6940 3.40 66.69 66.68 162 709.26 0.6940 3.40

Table 1: Comparison of TDA, GA and DE for different numbers of turbines (time is for 30 runs, as in [4])

to d = l
n−ns

. For fixed δ and α, a simple process determines
the positions of the windmills regularly on the field.

We chose evolutionary algorithms (EA) for solving this
two-variable problem because they will offer more flexibil-
ity for optimizing future improvements of the model that
could potentially involve many more variables. We decided
to compare a classical Genetic Algorithm (GA) and a Dif-
ferential Evolution (DE). For the GA, we use an arithmetic
crossover rule (rate=0.6) and the mutation (rate=0.2) was
done by adding some random noise to one of the variables.
For the DE, we use a differential weight of 1.5 and a crossover
probability of 0. For both algorithms, the population size is
50. 100 generations are computed for each run.

3. RESULTS AND CONCLUSION
We considered several scenarios with n = 10, 20, 30, ...100

turbines on a square farm of size 3km× 3km, and with n =
200, 300, 400, 500 and 1000 turbines on rectangular farms of
size 8km × 5km, 10km × 6km, 12km × 6km, 14km × 7km
and 20km× 10km.

Table 1 compares Wagner’s results [4] to the patterns op-
timized with a GA and a DE algorithm on 100 runs for
each scenario. The first three columns give the size of the
problem, the best and mean energy outputs in kW obtained
by Wagner’s algorithm (TDA stands for Turbine Distribu-
tion Algorithm). Column 4 gives the computation time.
Columns 5 and 6 give the best and mean results obtained
with the GA for 100 runs. Column 7 gives the mean time
for 30 runs (to compare with Wagner’s results). Even if the
processors used are different, for n = 1000, time is divided
by 25. Wagner uses 200 000 evaluations, whereas the GA
that we implemented required only 4000. Column 8 gives
the gain(+) or loss(-) obtained compared to Wagner’s re-
sults. The next columns give the results obtained with the
DE algorithm. For big farms (n ≥ 200) optimizing the farm
pattern is more effective. Surprisingly, this is also true for
small farms (n ≤ 50). For mid-size farms, better results can
be found in [4].

To conclude, we have shown that optimizing a simple pat-
tern outperforms existing results on configurations involving
a large number of turbines. The gain obtained for farms of
400 and more turbines exceeds 3%, while reducing compu-
tation time by an order of magnitude.

By reducing the size of the problem, we focused on opti-
mizing efficiently a small number of variables, and we com-
pensated the loss of generality of the model by a “better”
optimization of the remaining variables.

In future research this model can be complexified in order
to create more elaborated shapes and to increase the variety
of the solutions found. The results can also be used as a
starting point for other algorithms requiring a good starting
point or starting population.
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