An Adaptive Memetic Agorithm based on Multiobjecitve Optimization for Software Next Release Problem

Xin Cheng, Yuanyuan Huang, Xinye Cai^{*} and Ou Wei Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing,Jiangsu, 210016 P. R. China chengxin0223@126.com.hyy nust@sohu.com.xinye@nuaa.edu.cn and owei@nuaa.edu.cn

ABSTRACT

This paper proposes an adaptive multiobjective memetic algorithm to address the software next release problem. The proposed approach was tested and compared with single objective optimization approaches as well as multiobjective evolutionary approaches on real test instances mined from bug repository. Interestingly, results show multiobjective approach outperforms single objective approach in general and The proposed approach has the best performance.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General—Standards

Keywords

The Next Release Problem, Multiobjective Memetic Algorithm, Local Search, Adaptive Mechanism.

1. INTRODUCTION

In software industry, software companies usually develop and maintain large and complex software systems that have been sold to a range of diverse customers. One common problem that the companies face is to decide what requirements should be implemented in the next release of the software. The above problem is called next release problem(NRP). In this paper, we propose a memetic algorithm based on multiobjective optimization(MOMA) to address the next release problems. In our proposed MOMA, simulated annealing is integrated as the local search engine into decomposition based multiobjective optimization framework (MOEA/D). Furthermore, we adopt the concept of utility as an adaptive mechanism to determine the frequency of local search and the selection of solutions for local search in our proposed MOMA.

^{*}Xinye Cai is the corresponding author

GECCO'14, July 12–16, 2014, Vancouver, BC, Canada. ACM 978-1-4503-2881-4/14/07. http://dx.doi.org/10.1145/2598394.2598452.

2. THE SINGLE AND BIOBJECTIVE NEXT RELEASE PROBLEM

Assumes that an software system is associated with several *customers* whose requirements need to be considered in the next release. The set S of the customers is denoted by $s_i(1 \le i \le m)$). The set R of all the *requirements* that need to be considered is denoted by $r_j(1 \le j \le n)$). Implementation of each requirement need to be allocated with certain number of resources, A cost vector C is represented by $c_j(1 \le j \le n)$), where c_i indicates that cost of the requirement $r_i \in R$. A request $q_{ij} \in Q$ represent whether a customer s_i request a requirement $r_i, q_{ij}=1$ denotes that s_i requests r_i or $q_{ij}=0$ denotes not. Moreover, we assume that customers can gain different profits, when their requests are satisfied. We represent these profits as $W=w_i(1 \le i \le m)$), where w_i denotes the profit when the requests of customer s_i are satisfied in the next release.

The goal of the Single objective NRP is to find an optimal solution X^* , to maximize $Profit(X) = \sum_{(i,1)\in X} w_i$ gained by customers, which is the sum of profits gained by the selected customers, subject to $Cost(X) \leq b$, where b is a predefined budget constraint and $cost(X) = \sum_{r_k \in R(X)} c_k$, where $R(X) = \bigcup_{(i,1)\in X, q_{ij}=1} \{r_j\}$ is the requirements for X. Similarly, For the multiobjective NRP, The total profit for a solution X is defined by $W(X) = \sum_{(i,1)\in X} s_i$, which is the sum of profits gained by the selected customers. The required Cost for implementing the requirements of a solution X is $Cost(X) = \sum_{r_k \in R(X)} c_k$, where $R(X) = \bigcup_{(i,1)\in X, q_{ij}=1} \{r_j\}$ is the requirements for X.

3. THE PROPOSED ALGORITHM

For convenience, our proposed approach is named as multiobjective memetic algorithm with simulated annealing as the local search(MOMA-SA). At each generation, the proposed framework is presented in **Algorithm 1**. It works as follows:

Step 1 Initialization: Initialize P and A.

- **Step 2 Local Search:** Perform local search(SA) to P and generate a set of new solutions L.
- Step 3 Global Search: Perform global search to generate a set of N solutions Y from P.
- **Step 4 Population Update:** Use Y and L to update P and A.
- **Step 5 Stopping Condition:** If a preset stopping condition is met, output *A*. Otherwise, go to Step 2.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).Copyright is held by the author/owner(s).

4. EXPERIMENTAL DISCUSSIONS

In this section, we conduct experiments to validate our proposed MOMA-SA on real NRP instances. The detailed descriptions of the real instances from the open source software projects of Eclipse and Gnome. For convenience, they are denoted as nrp-e and nrp-g, respectively.

Algorithm 1:MOMA-SA

Input:

- 1. Multiobjective COPs;
- 2. a stopping criterion;
- 3. N: the number of subproblems; the population size of P and A;
- 4. a uniform spread of N weight vectors: $\lambda^1, \ldots, \lambda^N$;
- 5. the size of the neighborhood of each subproblem, denoted as T;

Output: A set of non-dominated solutions A;

Step 1: Initialization:

- a) Decompose the original multiobjective COP into N subproblems associated with $\lambda^1, \ldots, \lambda^N$.
- b) Generate an initial population $P = \{x^1, \dots, x^N\}$ randomly.
- c) Assign A = P.
- d) Compute the Euclidean distance between any two weight vectors and obtain T closest weight vectors to each weight vector. For each i = 1, ..., N, set $B(i) = \{i_1, ..., i_T\}$, where $\lambda^{i_1}, ..., \lambda^{i_T}$ are the Tclosest weight vectors to λ^i .

Step 2: Local search

- a) Select N solutions from P.
- b) Perform local search simulated annealing (SA) to the selected solutions to generate $N\ast J$ solutions.
- Step 3: Global search
 - For each $i \in P$, do:
 - a) Randomly select two indexes k and l from B(i).
 - b) Apply one point crossover and bit-wise mutation operators to x_k and x_l to generate y_i for subproblem i.

Step 4: Population update

- a) For each $i \in P$, do:
- b) If y_i is generated from subproblem i, for each index $k \in B(i)$, if $g^{ws}(y_i|\lambda^k) \leq g^{ws}(x_k|\lambda^k)$, then set $x_k = y_i$.
- c) Set j = 1.
- d) If L_j is generated from subproblem *i*, for each index $k \in B(i)$, if $g^{ws}(L_j|\lambda^k) \leq g^{ws}(x_k|\lambda^k)$, then set $x_k = L_j$.
- e) Set $j \to j + 1$. If $j \le J * N$, go back to Step 4d.
- f) Merge Y with A and new solution set L in Local search; to obtain $Z = A \cup Y \cup L$; sort the merged population Z with fast non-dominated sorting and crowding distance approach of NSGA-II and the best N solutions form the new A.

Step 5: Termination

a) If stopping criteria are satisfied, terminate the algorithm and output A. Otherwise, go to **Step 2**.

MOMA-SA using two select mechanisms for local search in **Algorithm 1**, namely, *global selection* and *adaptive selection based on utility* are termed gMOMA-SA and uMOMA-

Table 1:	Mean	and	standard	deviation	of	I_H	obtained	by		
various algorithms on MONRP instances.										

		NSGAII	MOEA/D	gMOMA -SA	uMOMA -SA	Wilcoxon test	
nrp-e1	mean	1.1617e + 08	1.4268e + 08	1.4635e+08	1.4642e + 08	0.0385	
	std	1.2917e+06	6.6765e + 05	1.6063e+05	1.2599e + 005	0.0000	
nrp-e2	mean	1.2142e+08	1.4758e + 08	1.5158e+08	1.5168e + 08	0.0337	
	std	1.3331e+06	8.2047e + 06	1.4228e+05	1.1180e+05	0.0337	
nrp-e3	mean	8.8672e+07	1.0849e + 08	1.1025e+08	1.1028e + 08	0.0639	
	std	1.2610e+06	3.2479e + 05	4.7894e+04	4.1890e+04	0.0033	
nrp-e4	mean	7.4862e+07	8.9218e+07	9.1123e+07	9.1140e+07	0.1478	
	std	1.0352e+06	2.1358e+05	5.0771e+04	6.3316e + 04		
nrp-g1	mean	9.4570e+07	1.1548e + 08	1.1744e+08	1.1748e + 08	1.1590e-04	
	std	1.1625e+06	4.0086e+05	3.1842e+04	2.5012e+04		
nrp-g2	mean	7.3694e+07	8.7304e+07	8.7826e+07	8.7826e + 07	0.7972	
	std	7.3188e+05	5.5541e+04	1.5201e+04	1.7036e+04		
nrp-g3	mean	9.5143e+07	1.1637e + 08	1.1737e+08	1.1738e+07	0.6554	
	std	1.1466e+06	2.1827e + 05	2.1360e+04	1.7755e+04	0.0004	
nrp-g4	mean	5.9457e+07	7.0168e+07	7.0691e+07	7.0690e+07	0.4570	
	std	6.8295e+05	1.1097e+05	3.5762e+04	1.4700e+04	0.4070	

Table 2: Comparison on single vs. multiobjective algorithms

instance			MSSA	\mathbf{GA}	BMA	NSGA-II	MOEA/D	gMOMA -SA	uMOMA -SA
		Best	5723	6662	7572	7135	7836	7773	7856
nrp-e1-0.3	Bound:3945	Average	5656.5	6553.4	7528.2	7063.6	7774.6	7715.8	7771.3
		Best	6575	9801	10664	10563	10949	11000	11032
nrp-e1-0.5	Bound:6575	Average	8550	9756.3	10589.2	10491.4	10881.3	10877.6	10893.3
		Best	5321	6275	7169	6699	7357	7290	7360
nrp-e2-0.3	Bound:4722	Average	5281.0	6219.6	7109.9	6472.6	7280.8	7231.5	7278.7
		Best	7932	9203	10098	9812	10286	10263	10278
nrp-e2-0.5	Bound:7871	Average	7869.6	9172.9	9999.8	9773.6	10234.8	10163.1	10205.3
		Best	5031	5795	6461	8558	8858	8850	8852
nrp-e3-0.3	Bound:4778	Average	4906.4	5693.1	6413.0	8504.3	7800.6	8768.6	8803.9
		Best	7436	8491	9175	10401	11922	11922	11921
nrp-e3-0.5	Bound:7964	Average	7340.5	8391.1	9100.1	10183.2	11538.8	11864.5	11876.4
		Best	4332	5065	5692	7251	7477	7450	7488
nrp-e4-0.3	Bound:5099	Average	4267.9	5023.8	5636.2	7209.8	6961.5	7255.4	7362.4
		Best	6459	7487	8043	9488	10176	10161	10175
nrp-e4-0.5	Bound:8499	Average	6391.1	7418.9	7968.0	9090.2	9866.6	10098.7	10095.4
		Best	4806	5494	5938	6036	6277	6278	6262
nrp-g1-0.3	Bound:4140	Average	4723.0	5437.0	5911.3	5933.7	6159.0	6155.3	6173.8
		Best	7339	8223	8714	8825	9123	9100	9134
nrp-g1-0.5	Bound:6900	Average	7250.3	8151.7	8660.0	8792.3	9003	9019.4	9050.4
		Best	3583	4256	4526	4361	4472	4480	4477
nrp-g2-0.3	Bound:3677	Average	3549.9	4195.5	4486.2	4309.6	4262.4	4452.3	4447.0
		Best	5433	6219	6502	6322	6398	6411	6413
nrp-g2-0.5	Bound:6129	Average	5359.8	6138.4	6470.2	6283.3	6238.3	6384.2	6385.4
		Best	4663	5351	5802	6372	6581	6560	6593
nrp-g3-0.3	Bound:4258	Average	4593.1	5296.6	5736.5	6317.6	6373.9	6492.3	6525.1
		Best	7032	7903	8714	9008	9375	9355	9370
nrp-g3-0.5	Bound:7097	Average	6948.1	7849.8	8326.8	8952.1	9272.2	9301.4	9328.4
		Best	3386	3951	4190	4029	4109	4121	4117
nrp-g4-0.3	Bound:3120	Average	3313.9	3909.9	4159.0	3998.1	3703.8	4094.0	4095.8
		Best	5041	5751	6030	5978	6054	6052	6056
nrp-g4-0.5	Bound:5350	Average	4991.6	5721.3	5986.5	5942.5	5994.3	6040.2	6040.7

SA, respectively. We adopt hypervolume indicator (I_H) when comparing the performance of various multiobjective approaches. Table 1 demonstrate the mean and standard deviation of hypervolume (I_H) for four compared algorithms. It can be observed that uMOMA/SA always has the best performance compared with other approaches (include gMO-MA/SA) in all NRP instances except nrp-g4.

We compare various single objective approaches include multi-start simulated annealing(MSSA), genetic algorithm (GA) and the Backbone-based Multilevel Algorithm (BMA); while multiobjective approaches include NSGA-II, MOEAD, gMOMA-SA(without adaptive mechanism) and uMOMA-SA(with adaptive mechanism based on utility). Table2 shows the best and average of the best solution, obtained by 7 above-mentioned approaches.

Each NRP instance may have two different cost ratio. For convenience, the nrp-g1 instance with cost ratio 0.3 is denoted as nrp-g1-0.3. The budget bounds corresponding to the cost ratio are presented in Table2. The results are presented as the best solutions in terms of customers profits within budget bounds found by various approaches. It can also be seen that our proposed uMOMA-SA is able to achieve the best solutions in most NRP instances.