
Fate Agent Evolutionary Algorithms with Self-Adaptive
Mutation

Arthur Ervin Avramiea
VU University Amsterdam

a.e.avramiea@student.vu.nl

Giorgos Karafotias
VU University Amsterdam

g.karafotias@vu.nl

A.E. Eiben
VU University Amsterdam

gusz@cs.vu.nl

ABSTRACT
Fate Agent EAs form a novel flavour or subclass in EC. The idea
is to decompose the main loop of traditional evolutionary algo-
rithms into three independently acting forces, implemented by the
so-called Fate Agents, and create an evolutionary process by in-
jecting these agents into a population of candidate solutions. This
paper introduces an extension to the original concept, adding a
mechanism to self-adapt the mutation of the Breeder Agents. The
method improves the behaviour of the original Fate Agent EA on
dynamically changing fitness landscapes.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]: Heuris-
tic methods

Keywords
Distributed EAs; parameter control; dynamic problems

1. INTRODUCTION
Evolutionary computation implemented through Fate Agents is a

new approach introduced in [2]. The motivational vision is grounded
in Adaptive Collective Systems, for example in swarm robotics or,
more generally, in distributed systems of autonomous agents, e.g.
wireless sensor networks, smart devices, smart vehicles, etc. The
main idea is to make such a collective system adaptive by injecting
a force that can adjust the behavioural policies (a.k.a. controllers)
of the individual units.

Such systems need to be able to adjust their initial pre-deployment
settings to unexpected circumstances and they should be able to
cope with changes. Using evolutionary techniques the swarm can
be naturally considered as a population where each individual is
(the controller of) a robotic unit. The “only” challenge is to add
selection and variation operators that work on these individuals. To
this end, it is important that the evolutionary process (i) is decen-
tralised (hence scaleable), (ii) can self-calibrate its own parameters
on the fly (needs no user tuning), and (iii) can cope with changes
(can re-calibrate its parameters).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598497.

The Fate Agents approach attempts to achieve this by perceiving
the controllers of the robots as individuals of a population and it
“evolutionarizes” this system by adding three types of Fate Agents
to the population. These agents implement the three principal evo-
lutionary operators parent selection, reproduction, and survival se-
lection, acting on the original individuals (robot controllers) and on
the Fate Agents themselves.

Our work addresses the classic theme of adaptivity and parame-
ter control in EC [6]. The Fate Agents EA is a spatially structured
EA [8], [1], however, unlike most spatial EAs, it does not rely on a
centralised “oracle”. The combination of spatial structure and pa-
rameter control has been studied in [5] and [4]. Our system can also
be related to meta-evolution [3], in particular the so-called local
meta-evolutionary approaches [7] (not the meta-GA lookalikes).

2. FATE AGENTS
Our Fate Agents EA is situated in a (virtual) space where agents

move and interact. The evolving population consists of passive
Candidate Solutions and active Fate Agents that embody EA oper-
ators. Candidate Solution agents only carry a genome representing
a solution to the given problem. Fate Agents embody evolutionary
operators and evolve themselves because they act not only upon
candidate solutions but also upon each other. They have a limited
range of perception and action, thus, the evolutionary process is
fully distributed as there is no central authority but different parts
of the space are regulated by different agents. A Fate Agent is eval-
uated by the fitness of the fittest candidate solution in its range.

There are three types of Fate Agents. Cupids and reapers re-
alise parent and survival selection respectively using tournaments.
Their genome consists of tournament sizes and selection proba-
bilities for each agent type. Breeders perform variation (recom-
bination and mutation). In our initial experiments with numeric
optimisation, breeders used Gaussian mutation1 and their genome
consisted of three values: the mutation step sizes for candidate so-
lutions, cupids and reapers. A step size for mutating breeders was
not included; breeders act differently upon themselves and upon
other agent types. If the breeders’ mutation step size was evolved
within their genome it would be used to mutate itself leading to
a positive feedback loop and exploding values. Instead, breed-
ers are mutated using the Evolution Strategies’ self-adaptation rule
x′ = x · eτN(0,1), where τ is the learning rate constant.

3. ADAPTIVE BREEDERS LEARNING RATE
The constant learning rate for breeders introduces inflexibility

to the otherwise self-regulated Fate Agents EA. Breeders are the
source of adaptivity but they themselves have a constant rate of
1And averaging recombination that has no parameters.

191



mutation. This can be most restrictive when solving dynamic prob-
lems, especially in the case of cataclysmic changes in the environ-
ment when the population has to quickly respond to the new situa-
tion. For this reason we introduce the Adaptive Breeders Learning
Rate(ABLR) mechanism. It affects the learning rate τcs used to
mutate the step size for candidate solutions in the breeders’ genomes.

Let Ft be the global best fitness at generation t and G = Ft −
Ft−K+1 the overall growth for the past K generations. When G ≤
0, we increase τcs by a factor `: τ t+1

cs = τ tcs · `. This results in an
increased mutation rate for candidate solutions (σcs) for the newly
created breeders since σ′cs = σcs · eτcsN(0,1). When G becomes
again positive τcs is reset it to its initial value τinit and the mutation
rates for all the breeders are reset to small random values in order
to promote convergence after the exploratory phase.

The value ofK poses a typical exploration/exploitation tradeoff:
if too small the ABLR mechanism will be activated too often not
giving a chance for exploitation while if too high the exploration
phases will be too long and waste time. Through initial experiments
we have a found a balance for K = 20. The other default values
for the ABLR settings are τinit = 0.25 and ` = 1.25.

Because the ABLR mechanism can create high mutation rates,
candidate solution gene boundaries are enforced using a bouncing
approach to avoid having big parts of their population getting stuck
at the limits of the search space instead of exploring.

Finally, in order for the ABLR mechanism to properly facilitate
recovery in dynamic environments we imposed a limitation on the
reapers’ behaviour. We have previously noticed that reapers eradi-
cate themselves when the EA converges to an optimum, thus, mak-
ing recovery from a subsequent change impossible (since no space
can be made for new individuals). For this reason, here reapers are
allowed to kill an agent only if this agent’s type comprises at least
10% of the total mixed population within the reaper’s range.

4. EXPERIMENTS AND RESULTS
We conducted experiments using drastically changing environ-

ments to test if the ABLR mechanism improves the Fate Agents
EA’s ability to cope with change. We used three scenarios A to
C where the fitness landscapes undergo complete transformations.
Each scenario is divided into five epochs of length 250000 evalu-
ations. During each epoch an entirely different fitness function is
used but this function remains the same during a specific epoch.
Thus each epoch ends with a cataclysmic change of the environ-
ment and there are four epochs (second to fifth) where the algo-
rithm is evaluated after such a change. For scenario A, the Fletcher
& Powell function was used with five different matrices for the five
epochs. For scenarios B and C the BBOB 2013 benchmark suite2

was employed3.
In table 1 we have compared the performance of the original al-

gorithm and the algorithm with the adaptive breeder learning rate
mechanism for the 3 scenarios. The results convincingly demon-
strate the advantage of the ABRL method: for all three scenarios,
the performance after a change is much higher. The differences can
be small (one or two cases), but typically they are large, even one
or two orders of magnitude (in eight cases).

To further assess the ABLR’s quality we compared the expected
performance of the algorithms when starting with a converged4

population to the expected performance when starting with a fresh
random population. The ABLR enhanced algorithm starting with a
converged population achieved performance not significantly worse

2http://coco.gforge.inria.fr/doku.php?id=bbob-2013
3Source code at www.few.vu.nl/~gks290/resources/FateABLR.tar.gz
4Converged to a very different previous landscape.

than when starting with a random population for eight out of 12
problems. The original algorithm achieved that only once.

Table 1: Comparison of the original Fate Agent EA and the
new version using the ABLR. Mean Best Fitness for each sce-
nario/epoch calculated over the 40 runs is shown. All problems
are maximisation: larger values are better

Scn Algthm Epo 1 Epo 2 Epo 3 Epo 4 Epo 5

A Original 0.2285 0.001 0.0255 0.0008 0.0003
ABLR 0.1963 0.1029 0.2371 0.0521 0.0083

B Original 0.4631 0.1262 0.9994 0.0654 0.5963
ABLR 0.4644 0.183 0.9998 0.6301 0.9172

C Original 0.6158 0.0596 0.0361 0.298 0.024
ABLR 0.5383 0.5667 0.4394 0.5685 0.1589

5. CONCLUSIONS
We aimed at improving the Fate Agents EA’s ability to cope with

changes. To this end, we redefined the working of the reproduction
agents by adding the ABLR mechanism that makes the mutation
operator they use self-adaptive. For an experimental assessment we
used synthetic fitness landscapes and defined 3 scenarios composed
of 5 epochs with cataclysmic changes between them.

The experimental results showed that the Fate Agents EA with
the ABLR mechanism performs better than the original exhibit-
ing much higher best fitnesses after each epoch. Furthermore, the
ABLR enhanced algorithm very often makes a “full” recovery as
opposed to the original that almost never does.

6. REFERENCES
[1] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms.

Springer, Berlin, Heidelberg, New York, 1st edition, 2008.
[2] J. Bim, G. Karafotias, S. K. Smit, A. E. Eiben, and

E. Haasdijk. It’s fate: A self-organising evolutionary
algorithm. In C. A. C. Coello, V. Cutello, K. Deb, S. Forrest,
G. Nicosia, and M. Pavone, editors, PPSN, volume
7491–7492 of Lecture Notes in Computer Science, pages
185–194. Springer, 2012.

[3] B. Freisleben. Meta-evolutionary approaches. In T. Bäck,
D. Fogel, and Z. Michalewicz, editors, Handbook of
Evolutionary Computation, pages 214–223. Institute of
Physics Publishing, Bristol, and Oxford University Press, New
York, 1997.

[4] Y. Gong and A. Fukunaga. Distributed island-model genetic
algorithms using heterogeneous parameter settings. In IEEE
Congress on Evolutionary Computation, pages 820–827,
2011.

[5] V. Gordon, R. Pirie, A. Wachter, and S. Sharp. Terrain-based
genetic algorithm (TBGA): Modeling parameter space as
terrain. In W. Banzhaf et al, editor, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-1999),
pages 229–235. Morgan Kaufmann, San Francisco, 1999.

[6] G. Karafotias, M. Hoogendoorn, and A. E. Eiben. Parameter
control in evolutionary algorithms: Trends and challenges.
IEEE Transactions on Evolutionary Computation, to appear,
2014.

[7] A. Samsonovich and K. De Jong. Pricing the ’free lunch’ of
meta-evolution. In H.-G. Beyer and U.-M. O’Reilly, editors,
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2005), pages 1355–1362. ACM, 2005.

[8] M. Tomassini. Spatially Structured Evolutionary Algorithms:
Artificial Evolution in Space and Time (Natural Computing
Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

192




