
Multi-Sample Evolution of Robust Black-Box Search
Algorithms

Matthew A. Martin
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
mam446@mst.edu

Daniel R. Tauritz
Natural Computation Laboratory

Department of Computer Science
Missouri University of Science and Technology

Rolla, Missouri, U.S.A.
dtauritz@acm.org

ABSTRACT
Black-Box Search Algorithms (BBSAs) tailored to a spe-
cific problem class may be expected to significantly out-
perform more general purpose problem solvers, including
canonical evolutionary algorithms. Recent work has intro-
duced a novel approach to evolving tailored BBSAs through
a genetic programming hyper-heuristic. However, that first
generation of hyper-heuristics suffered from overspecializa-
tion. This poster paper presents a second generation hyper-
heuristic employing a multi-sample training approach to al-
leviate the overspecialization problem. A variety of exper-
iments demonstrated the significant increase in the robust-
ness of the generated algorithms due to the multi-sample
approach, clearly showing its ability to outperform estab-
lished BBSAs. The trade-off between a priori computa-
tional time and the generated algorithm robustness is inves-
tigated, demonstrating the performance gain possible given
additional run-time.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming–program synthesis

General Terms
Algorithms, Design

Keywords
Black-Box Search Algorithms, Evolutionary Algorithms, Ge-
netic Programming, Hyper-Heuristics

1. INTRODUCTION
Practitioners tend to be interested in solving a particular

problem class which may fall anywhere on the continuum
from a single instance problem to an arbitrarily large prob-
lem class. However, progress in the field of meta-heuristics

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598448.

has typically been aimed at solving increasingly varied prob-
lem classes. There is a clear need for meta-heuristics tun-
able to the needs of practioners in terms of the scope of the
problem classes of interest, whether that be solving solely
instances of MAXSAT with a fixed clause length and set
number of variables, or arbitrary MAXSAT instances.

This paper introduces an improved version of the hyper-
heuristic employing Genetic Programming (GP) introduced
in [3] which drastically decreases the probability of evolving
BBSAs that suffer from overspecialization. This improve-
ment trains the evolved BBSAs employing a multi-sample
approach. We present an investigation of the trade-off be-
tween the extra a priori computational time due to increas-
ing sampling size and the increased robustness of the gen-
erated BBSAs in terms of lower variation in performance
when varying the problem configuration. This is of critical
importance to practitioners who need to be able to rely on
the consistency of the generated BBSAs on all instances of
their problem class of interest.

The goal of the research reported in this paper is to show
that increasing the multi-sampling level increases the robust-
ness of the generated BBSAs. Two primary measurements
are employed to determine robustness [2]. The first is fal-
libility; if this value is large, it means that the BBSA can
have a large difference in performance depending on prob-
lem configuration. The second measure is applicability: the
size of the problem configuration space in which the BBSA
performs better than a threshold value. For a BBSA to be
highly robust, it should have a small fallibility and a large
applicability.

This poster paper summarizes the experiments detailed
in [4] where the related work and a detailed description of
the methodology and experiments can be found.

2. METHODOLOGY
The specific focus of the research reported in this paper is

to evolve robust BBSAs for a specific problem class using a
multi-sample evaluation which can consistantly outperform
more general purpose BBSAs. Koza-style tree-based GP was
employed to evolve the algorithms where fitness was based
on the performance averaged over a set of training problem
configurations. The non-terminal nodes that compose these
trees are operations extracted from preexisting algorithms
and the terminal nodes are sets of solutions.

GP is employed to meta-evolve the BBSAs. Each individ-
ual in the GP population encodes a BBSA in a parse-tree.
The fitness of a BBSA is estimated by computing the fitness

195



function that it employs on the solutions it evolves aver-
aged over multiple runs. Each run of the BBSA begins with
population initialization, followed by the parse-tree being
repeatedly evaluated until one of the termination criteria is
met.

The two primary variation operators employed are the
standard sub-tree crossover and mutation altered to make
the maximum number of nodes being added a user defined
value. To ensure that the genetic program produces good
BBSAs, the ones which do not evaluate any solutions are
discarded upon generation.

A major issue identified in [3] is the problem of overspe-
cialization when training on a single problem configuration
of a given problem class. Following the approach suggested
in [3], the BBSAs are executed on multiple problem config-
urations of the problem class of interest. On each problem
configuration, the BBSAs run a user-specified number of
times. This addition allows the user to control the robust-
ness of the generated BBSA. If the user requires a BBSA
that performs very consistently, then running the algorithm
with more problem configurations is beneficial.

3. EXPERIMENTS
To demonstrate that the addition of multi-sampling eval-

uation of the BBSA reduces the probability of overspecial-
ization, the algorithm was run on a series of multi-sampling
levels, where a level is defined by the number of training
problem configurations it samples. Once the BBSA has been
evolved with a given multi-sampling level, it is tested on a
superset of problem configurations to estimate the robust-
ness of the BBSA and to demonstrate that it can outperform
a standard EA.

The classic Deceptive Trap benchmark problem [1] was
chosen to compare the results in this paper with those in [3],
where BBSAs were evolved and suffered from overspecializa-
tion. The main purpose of the experiment was to study the
effect of multi-sampling on the performance landscape across
a wide set of problem configurations. The areas of interest
in this experiment are the problem configurations that are
very far away from the trained problem configurations. The
BBSA with the largest fallibility, where fallibility indicates
the difference between best and worst performance on the
test problem configurations, were selected from each multi-
sampling level to demonstrate a worst case scenario. These
BBSAs, along with an EA, were run on all problem config-
urations with k from 4 to 20 inclusive and bit-lengths from
roughly 70 to 500. The algorithms were run five times on
each problem configuration.

4. DISCUSSION & CONCLUSION
The results presented show that the robustness improves

as the multi-sampling level is increased. The least robust
BBSA found using multi-sampling level one, performs well
in the immediate area around the problem configuration that
it was trained on. Unsurprisingly, as the problem configura-
tion gets farther away from the trained problem configura-
tion, the fitness decreases. This algorithm performs similarly
to other algorithms that are tuned to specific problem con-
figurations. When compared to how the EA performs on the
same problem configuration space, the BBSA outperforms
the EA in problem configurations near the trained problem
configuration, but performs at near the same level as the

distance increases. The variance in performance of the algo-
rithm decreases as the multi-sampling level increases.

Training a BBSA on a larger number of training problem
configurations improves the performance of the BBSA. In
most cases, the improved performance is restricted to prob-
lem configurations that are relatively close to the trained
problem configurations. However, when multi-sampling is
built into the generation of the algorithm rather than solely
the parameter tuning, the increased performance of the al-
gorithm can be generalized to larger portions of the problem
configuration space. The fallibility decreases as the multi-
sampling level increase. Note that the training sets that
these algorithms were generated on were restricted to a k
from 5 to 7 and a bit − length from 100 to 300 and the
problem configuration space includes a k from 4 to 20 and
a bit − length from approximately 75 to 500. This method
is shown to not only generate BBSAs that generalize to the
problem configuration space close to the trained problem
configurations, but to create BBSAs that have generalized
to a much wider area of the problem configuration land-
scape. Though it is possible to evolve robust algorithms
without using the multi-sampling method, it is shown that
with a higher multi-sampling level, the general robustness
of the evolved BBSA is increased along with the certainty
that the evolved BBSA will indeed be robust.

One drawback of this method is the increased computa-
tional time that it requires. One cause of this increase are
the additional runs that are necessary during the evaluation
of a given BBSA. This extra computational time increases
linearly with the multi-sampling level. It was noticed during
testing and in the final results that the experiments run at a
higher multi-sampling level can have a lower average fitness.
Due to this result, a trend in the applicability is not statis-
tically discernable. The BBSAs evolved at multi-sampling
level five had the lowest trained fitness. This is believed to
be caused by the increased difficulty of finding an algorithm
that performs well on all of the training problem configu-
rations. These two aspects cause the computational time
increase of Ω(L), with L being the multi-sampling level.

5. REFERENCES
[1] K. Deb and D. Goldberg. Analyzing Deception in Trap

Functions. In Proceedings of FOGA II: the Second
Workshop on Foundations of Genetic Algorithms, pages
93–108, 1992.

[2] A. Eiben and S. Smit. Parameter tuning for configuring
and analyzing evolutionary algorithms. Swarm and
Evolutionary Computation, 1(1):19 – 31, 2011.

[3] M. A. Martin and D. R. Tauritz. Evolving Black-box
Search Algorithms Employing Genetic Programming.
In Proceeding of the Fifteenth Annual Conference
Companion on Genetic and Evolutionary Computation
Conference Companion, GECCO ’13 Companion, pages
1497–1504, New York, NY, USA, 2013. ACM.

[4] M. A. Martin and D. R. Tauritz. A Problem
Configuration Study of the Robustness of a Black-Box
Search Algorithm Hyper-Heuristic. In Proceeding of the
Sixteenth Annual Conference Companion on Genetic
and Evolutionary Computation Conference Companion,
GECCO ’14 Companion, New York, NY, USA, 2014.
ACM.

196




