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ABSTRACT
For the past 25 years, NK landscapes have been the classic
benchmarks for modeling combinatorial fitness landscapes
with epistatic interactions between up to K + 1 of N bi-
nary features. However, the ruggedness of NK landscapes
grows in large discrete jumps as K increases, and comput-
ing the global optimum of unrestricted NK landscapes is
an NP-complete problem. Walsh polynomials are a super-
set of NK landscapes that solve some of the problems. In
this paper, we propose a new class of benchmarks called
NM landscapes, where M refers to the Maximum order of
epistatic interactions between N features.NM landscapes are
much more smoothly tunable in ruggedness than NK land-
scapes and the location and value of the global optima are
trivially known. For a subset of NM landscapes the location
and magnitude of global minima are also easily computed,
enabling proper normalization of fitnesses. NM landscapes
are simpler than Walsh polynomials and can be used with al-
phabets of any arity, from binary to real-valued. We discuss
several advantages of NM landscapes over NK landscapes
and Walsh polynomials as benchmark problems for evaluat-
ing search strategies.

1. INTRODUCTION
Simulated landscapes are widely used for evaluating search

strategies, where the goal is to find the landscape location
with maximum fitness value [2]. Without loss of generality
and for notational simplicity, we assume function maximiza-
tion, rather than minimization, throughout this paper. NK
Landscapes [3] have been the classic benchmarks for gen-
erating landscapes with epistatic interactions. They are de-
scribed by two parameters: N specifies the number of binary
features or loci and K specifies the degree of epistatic inter-
actions among the features, where the maximum order of
interactions is K + 1 [2]. NK landscapes have been used in
many applications and widely studied in theory, as they can
generate landscapes with various ruggedness using different
values of K.
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However, NK landscapes have several limitations as bench-
mark problems. Buzas and Dinitz [1] recently showed that
the expected number of local peaks in NK landscapes rises
in large discrete jumps as K is increased, but actually de-
creases as a function of the number of interaction terms
in an equivalent parametric interaction model. Addition-
ally, the problem of finding the location and value of the
global optimum of unrestricted NK landscapes with K > 1
is NP-complete, although for restricted classes one can use
dynamic programming or approximation algorithms [5].

Walsh polynomials are a superset of NK landscapes that
overcome some of the limitations of NK landscapes (for ex-
ample they allow more control over which interactions are
present and one could construct Walsh polynomials that
have known global maximum [4]). However, the way Walsh
polynomials are defined limits there use to binary features.
In this paper, we introduce a different, more flexible sub-
set of general interaction models that we dub NM land-
scapes. NM landscapes transparently incorporate any num-
ber of epistatic feature interactions. Moreover, they also (a)
have known value and location of the maximum fitness, (b)
work with alphabets of any arity, including both discrete and
real-valued alphabets, and (c) when coefficients are chosen
properly, have smoothly tunable ruggedness. A subset of
these landscapes also has known value and location of the
minimum fitness.

2. NM LANDSCAPES
Parametric interaction models have been long used in statis-

tics to study effects of multiple features on an outcome.
They are easy to define and the interactions are transpar-

ent and easy to interpret (unlike in NK landscapes or Walsh
polynomials). A fitness landscape F can be defined for N
binary features using an interaction model of the form:

F (x) =

m∑
k=1

βUk

∏
i∈Uk

xi (1)

where xi ∈ {−1, 1}, x = [x1, x2, ....xN ], m is the number of
terms, and each of m coefficients βUk can take any value in
R. For k = 1 . . .m, we define Uk ⊆ {1, 2, . . . , N}. We adopt
the convention that when Uk = ∅,

∏
j∈Uk

xj ≡ 1.

In [1] the authors show that for every NK landscape with a
given K, one can create an equivalent parametric interaction
model, where the maximum order of interactions is K + 1.
They show that the NK algorithm dictates that the interac-
tion model contain all main effects and sub-interactions con-
tained in higher order interactions. Thus, NK landscapes are
a very restricted subset of general interaction models. While
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both NK landscapes and binary interaction models can be
represented as Walsh polynomials, interaction models rep-
resent a larger set of functions as they naturally extend to
real-valued features. However, in general the location and
the value of the maximum fitness is unknown (for both gen-
eral interaction models and Walsh polynomials).

We introduce a subset of interaction models called NM
landscapes, where N is the number of features and all in-
teractions in the model are of order ≤ M . NM models
comprise the set of all interaction models described by Eq.
(1), with the added constraint that all coefficients βUk are
non-negative. In this work, each βUk is randomly created as
follows:

βUk = e−abs(N(0,σ)) (2)

where N(0, σ) is a random number drawn from a Gaussian
distribution with 0 mean and standard deviation of σ. As
the values of σ increase so does the standard deviation of
the number of local peaks in the landscapes. We use σ = N
in our experiments. It is possible that other non-negative
coefficient distributions may also yield landscapes with de-
sirable characteristics. However, while any non-negative dis-
tribution will yield known location and value of the global
maximum, not all non-negative distributions lead to land-
scapes with smoothly tunable number of local peaks.

Based on the above definition a maximum fitness Foptimal
of an NM landscape with a binary alphabet is achieved when
all features are set to 1 (xi = 1, ∀i) and the value of Foptimal
of an NM landscape with a binary alphabet is:

Foptimal =

N∑
i=1

βUk (3)

Furthermore, NM landscapes can be defined on discrete al-
phabets of any arity or on real-valued alphabets, and the
value and location of a global maximum is independent of
the discretization of the alphabet. For any alphabet in the
range [−a, b], where a ≤ b, the optimal fitness is achieved
when all the features are equal to b (xi = b, ∀i) and the
optimal fitness is: F (x) =

∑
∀βUk

βUkb
|Uk| (4)

There are many ways that the complexity of an NM land-
scape can be varied. For example, increasing the maximum
order of interactions (M) will increase the ruggedness. In ad-
dition, in NM landscapes one could easily draw the random
coefficients βUk for different orders of interactions from dis-
tributions with different maximum values (e.g., by varying
σ in Eq. (2)). Our experiments show that the number of lo-
cal peaks L in NM landscapes increases relatively smoothly
(Fig. 1), and the lag 1 autocorrelation decreases relatively
smoothly, as we increase the number of terms (m) in the
model for a given maximum order of interaction M and as
we increase the maximum order of interactions M (i.e., as
we cross a vertical line on Fig. 1). In NM models one can
easily control which interactions are present or absent. For
example one can only include odd order interactions, which
will result in landscapes, where the global minimum is equal
to the global maximum with opposite sign.

3. CONCLUSIONS
In conclusion, NM landscapes are parametric interaction

models that have non-negative coefficients. They naturally
incorporate epistasis in a simple and transparent model.
NM landscapes are well-defined for alphabets of any arity
(from binary to real-valued), as long as the minimum value

0 200 400 600 800 1000
0

20

40

60

80

100

120

M
 =

 2

M
 =

 3

M
 =

 4

M
 =

 5

M
 =

 6

M
 =

 7

M
 =

 8

Number of terms (m)

N
u

m
b

e
r 

o
f 

lo
c
a

l 
o

p
ti
m

a
 (

L
)

σ = 10

Figure 1: Number of local peaks in landscape as we
increase the number of terms (x-axis) and maximum
order of interactions M (labels near top), for NM
landscapes with N = 10 and σ = 10. The gray area
shows the standard deviation and black line shows
the mean for 100 random NM landscapes.

in the alphabet is negative with absolute value≤ the positive
maximum value. This combination of constraints ensures
that a global maximum is located at the point where all de-
cision variables have their maximum value, with the optimal
value equal to the sum of the model coefficients. By further
restricting which combinations of interactions are present, a
subset of NM models can also be constructed with known
location and value of the global minimum. One can easily
control or analyze which terms and interactions are present
in an NM landscape. By using an appropriate non-negative
distribution for the coefficients, the resulting NM landscape
models have smoothly tunable ruggedness. The coefficient
distribution can be tuned in a variety of other ways that con-
trol the distribution of fitnesses in the landscape, depend-
ing on what is most appropriate for a particular application.
NM landscapes are thus a simple but powerful class of mod-
els that offer many benefits over NK landscapes and Walsh
polynomials.
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