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1. INTRODUCTION
Evolutionary algorithms can be applied to evolve controllers
for single robots and similarly for groups of robots. Collec-
tive behaviors of groups of robots are investigated in the
field of swarm robotics [1] which is the application of swarm
intelligence to the field of robotics. An option is to to apply
methods from evolutionary robotics to swarm robotics, that
is, evolutionary swarm robotics [3]. In a standard approach
a fitness function is used to reward behavioral features that
are desired. In this paper we follow an alternative approach
that generates collective behaviors without explicit selection
for desired behaviors. We evolve agents, that mainly focus
on predictions of their future perceptions, but still observe
a number of different collective behaviors as a result. This
approach is motivated by the hypothesis that perception is
essentially a process of probabilistic inference—an idea that
goes back to Helmholtz [4]. Following this concept, the main
task of a brain is to figure out appropriate causes to its per-
ceptions. Hence, the brain is interpreted as a ‘prediction
machine’ that learns to model its perceptions. A math-
ematical framework by Friston [2] defines an information-
theoretic analogon to the thermodynamic (Helmholtz) free
energy which is basically the prediction error here. Friston’s
approach of a ‘free-energy principle’ might open up oppor-
tunities to formulate a unified brain theory [2].
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Figure 1: Experimental setting and sensor setting.

Here, we do not learn sophisticated probabilistic models but
merely evolve weights of artificial neural networks (ANN).
There are two ANNs in each agent: an ANN implement-
ing the prediction machine and an ANN implementing a
regular controller. The selective pressure is on the predic-
tion machine by rewarding minimal prediction errors (sur-
prisal) while the actual controller receives no direct selective
pressure. Our results show a variety of basic collective be-
haviors, such as dispersion, aggregation, and flocking. We
define 4 basic collective behaviors that are based on two
features only: motion (moving or stopped) and relative po-
sitions (minimal distances between agents or maximal dis-
tances). We categorize the behaviors along these two dimen-
sions: dispersion (maximal distances, stopped), aggregation
(minimal distances, stopped), random (maximal distances,
moving), and flocking (minimal distances, moving).

2. MODEL
We investigate the collective motion of agents in a one-
dimensional system in the form of a circle that we call ring
(see Fig. 1a). The circumference of this ring is denoted by
ring length L. The agents have no global reference frame
and cannot discriminate between clockwise or counterclock-
wise motion. They have two available actions: staying with
the current direction or switching the direction while not
being allowed to stop. The agents have 4 sensors: L1, L0,
R0, and R1. Each sensor covers an interval of the agent’s
neighborhood as defined by the sensor distances s0 and s1
(see Fig. 1b). These are discrete sensors that output 1 if
there are agents within the respective interval or 0 if there
is no agent.
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(d) flocking (L = 15)

Figure 2: Trajectories of all agents for the four basic
swarm behaviors: dispersion, aggregation, random,
and flocking.

In the following the swarm size is fixed to N = 20 and the
ring length L is varied (i.e., different swarm densities N/L).
The agent positions and directions are initialized to random
uniform values. Agents move with speed v = 0.1 with a
small noise that is added to the speed and which is also
random uniform over [−0.01, 0.01]. Agents can pass each
other without any interference.
Each agent has two ANNs that we call ‘action network’ and
‘prediction network’. The action network has 5 input neu-
rons, 2 hidden neurons, and 1 output neuron. The inputs
are the 4 sensor values (L1,L0,R0,R1) and the last action.
The output neuron determines the next action based on a
threshold. The prediction network is a recurrent network
due to self-loops of the hidden neurons and has 5 input neu-
rons, 4 hidden neurons, and 4 output neurons. The input
is the same as with the action network. The output of the
prediction network are 4 values that are associated with the
4 intervals of the 4 sensors (L1,L0,R0,R1). Each output neu-
ron determines the predicted value of the respective sensor
for the next time step.
The simple evolutionary algorithm (proportionate selection,
elitism of 1, population size is 50) operates on genomes con-
sisting of two sets of weights (for the action network and
the prediction network). Initially a population of random
weights is generated. The genomes are evaluated by apply-
ing the swarm simulation. In each particular evaluation run
all agents have the same networks. The fitness function re-
wards good predictions of the prediction network. It is the
sum over all correct predictions per sensor averaged over the
evaluation period, the swarm, and 10 independent simula-
tion runs. The theoretical best fitness is 4. Each weight of
the ANNs is mutated with a probability of 0.05. Evolution
is run for 30 generations totaling to 1500 evaluations.

3. RESULTS
The 4 basic collective behaviors discussed above occurred in
the experiments for different ring lengths L (i.e., different
swarm densities). Examples of these behaviors are shown in
Fig. 2 which shows the trajectories of the whole swarm for
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Figure 3: Best fitness over generations and compar-
ison of best fitness for different ring lengths L.

each behavior. In Fig. 2a an example for a behavior that
can arguably be called dispersion is shown (i.e., agents keep
a distance between them). The agents keep switching their
direction of motion and hence do not cover any distance.
Fig. 2b gives an example of an aggregation behavior. Agents
minimize the distances between them and cover no distance.
Fig. 2c gives an example of a random behavior. The agents
keep moving in the same direction without reacting to each
other. A flocking behavior is shown in Fig. 2d. Agents
minimize the distances between them and keep moving.
Fig. 3a gives the best individual fitness over generations for
200 independent evolutionary runs for ring length L = 25.
Initially there is a steep increase up to generation t = 9
which is followed by a saturation in the best fitness. The last
generation’s median is 3.33 which means that the prediction
network is predicts an average of 83.3% sensor values cor-
rectly. For a set of ring lengths L ∈ {5, 10, 15, 20, 25, 30, 35,
40, 45, 50} 200 independent evolutionary runs were done.
Fig. 3b gives a comparison of the last generation’s best fit-
ness for all tested ring lengths L. The highest median best
fitness is reached for L = 5 (3.68) and for L = 50 (3.64)
whereas the lowest median best fitness is reached for L = 25
(3.33). For L < 30 the medians decrease with increasing
ring length and start to increase again for L > 25. It
seems that predictions are more difficult for medium densi-
ties (10 ≤ L ≤ 35). Predictions are simple for high densities
as most sensors detect neighbors without too much change.
Predictions for low densities are simple as most sensors de-
tect no neighbors. However, sensor input varies for medium
densities which complicates making good predictions.

4. CONCLUSION
Motivated by the idea of the free-energy principle [2] we
have presented an approach to evolve basic collective be-
haviors by selecting for good prediction machines. Without
a direct selective pressure on behaviors, typical swarm be-
haviors emerge with dependencies on the swarm density.
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