
Minimal Variable Quantum Decision Makers for Robotic
Control

Walter O. Krawec
Stevens Institute of Technology

Hoboken NJ, 07030
walter.krawec@gmail.com

ABSTRACT
In this report we describe our research involving the con-
struction of quantum-based robotic controllers. By care-
ful use of quantum interference as a computational resource
and by utilizing only a linear number of elementary uni-
tary transformations, we are able to construct systems which
seem to provide a computational advantage even when sim-
ulated on a classical computer.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

Keywords
Quantum Computing; Evolutionary Robotics; Artificial Life

1. THE CONTROLLER DESIGN
This paper reports on our recent work involving the con-

struction of efficient quantum-based controllers to be utilized
as reactive robotic controllers. Unlike most previous work
in quantum controlled robots (e.g., [5]), our controllers are
meant to be operated using today’s classical computers -
they are quantum only in that they utilize certain nice math-
ematical properties of quantum computation. Note that de-
signing “quantum inspired” but classical algorithms has seen
interest and success in other fields including information re-
trieval [6] and certain instances of the graph isomorphism
problem [2]. Our work builds on the ideas presented in [3]
which introduced the idea of studying quantum based con-
trollers simulated by classical computers for robotics and
artificial life.

Our work has been analyzing an extended version of the
quantum decision maker (QDM) described in [1], originally
meant to model certain human behavioral paradoxes. We
view it as the quantum analogue of the following process:
given input state S = (s1, · · · , sn) ∈ {0, 1}n (e.g., each si

a sensor input), the controller, consisting of N ≥ n event

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Copyright is held by the author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598409.

Figure 1: Process by which a QDM makes a deci-
sion (from [3]). Each |θi〉 is the state of the QDM
at time t = i (usually represented as a vector). The
U(state i) are (typically unitary) operators which de-
pend on the state of the agent at time t = i. TOP is a
unitary matrix fixed regardless of the current state.
The state at time i + 1 is then |θi+1〉 = TOP · Ui |θi〉.
This repeats R times (the reaction rate) before a
decision is made via a simulated measurement. Fol-
lowing this, the process repeats.

states denoted Xi and m action states denoted Ai, transi-
tions from a start state, to an event state (probabilistically
depending on a preprocessing function f taking as input S
and outputting transition rules for start to event states),
then to an action state (the probabilistic transition rules for
event states to actions are not based on S or f). Whichever
action state is transitioned to is the action decided on (alter-
natively, the output are values pi: the probability of transi-
tioning to Ai).

We extend the model of [1] to support n event states {Xi}
(as opposed to two) where n is again as above. Though
we extend the number of supported inputs, we still consider
only two actions (for now). This results in a Hilbert space of
dimension 2n - see [4] for an introduction to quantum com-
puting. Instead of running the sensor state (s1, · · · , sn) ∈
{0, 1}n through f , we will simply start the QDM in an equal
superposition of all input states Xi where si = 1 (we assume
at least one si = 1 - otherwise we add a “dummy” sen-
sor which is equal to one if all others are zero). A unitary
matrix TOP (notation from [3]) is then applied and a (sim-
ulated) measurement is made resulting in a decided action.
We call this QDM the Event Based QDM (ebQDM). The
most general TOP matrix however requires 4n2 variables to
encode and optimize over for learning.

As described in [7], an arbitrary M ×M unitary matrix
(M = 2n in our case) may be decomposed as the product of

33

Figure 2: Average squared error for data sets (n, P).
Each set (n, P) was evaluated and averaged using 400
independent trials. Solid line: mvebQDM; Dotted
line: CDM-Fixed; Dashed line: CDM-Var.

O(M2), elementary unitary transformations. Changing the
basis used in [1] from |Xa, Ab〉 to the standard computational

basis |(b− 1)n+ a〉 for a = 1, · · · , n; b = 1, 2, let E(i,j)(φ)
be the unitary operator sending |i〉 to cosφ |i〉+sinφ |j〉 and
sending |j〉 to − sinφ |i〉+ cosφ |j〉 (see Equation 3.1 of [7]).
Then we set TOP to be the (unitary) matrix:

TOP =

n−1Y
i=1

E(n−i,2n−i)(φi)

n−1Y
i=0

E(n−i,2n)(φ2,i).

This requires 2n − 1 variables to describe (the “φ” values).
We call the ebQDM utilizing this particular TOP, the Min-
imal Variable Event Based QDM or mvebQDM. Note this
is just one possible “minimal” TOP - others might perform
better or worse for some problems.

To operate this QDM, given input S = (s1, · · · , sn), we
create the 2n vector: 1√

p
(s1, · · · , sn, 0, · · · , 0) where p is the

number of non-zero si. Considering the abstract interface of
[3] (see Figure 1), this is handled by the qdm::input com-
mand (not that it greatly matters, but this input process
may be done via a unitary operator). Next we multiply by
the TOP matrix, described above (qdm::think). Finally,
we compute p1, the probability that action A1 is chosen
(qdm::decide). This is simply the sum of the squares of the
first n entries of the resulting vector after multiplication. For
robotic control, this value p1 is either used directly by some
other process or is used to “pick” from A1 or A2 (the decided
Ai is then translated to an appropriate action). The reac-
tion rate for this QDM is R = 1. Training is accomplished
by adjusting the 2n− 1 φi and φ2,i variables.

To evaluate the mvebQDM with this TOP , we first test its
ability to model random data points. We compare with two
different versions of classical devices: the first uses 2n − 1
event states and a fixed f . This is denoted CDM-Fixed
(Classical Decision Maker). The second has n event states
and a variable function f which could be trained to map
n−1 distinct states S (out of 2n−1 possible non-zero states)
to any one of the first n − 1 event states; all others being
mapped to the n’th input state Xn. This we denote CDM-
Var (note it is equivalent to a list of n IF-THEN-ELSE state-
ments). Transition rules for events to actions are specified
by a single value qi for each Xi. Thus, both these classical
processes require 2n− 1 variables to encode and learn.

Our tests were performed on data sets denoted (n, P).
For each i = 1, · · · , P , we chose a random (non-zero) input
state Si ∈ {0, 1}n and a random probability pi ∈ [0.2, 0.8]
(this interval chosen to help avoid certain range limits in the
QDM - this bound also benefits the CDM). For each model,

a genetic algorithm was run for 200 iterations (regardless of
n and P ; also population size of 200 was used) to find a solu-
tion whereby action A1 was chosen with probability pi given
input Si (∀ i = 1, · · · , P). Note that, given sufficient time,
the CDM-Var should be able to model exactly those points
with n ≥ P , however the search space grows exponentially in
n. Also note that, if we knew exactly which sensor states Si

were to be picked, we could construct preprocessing function
f manually and the CDM-Fixed would model the data per-
fectly (if 2n− 1 ≥ P). The mvebQDM however, using only
a standard GA, outperforms both for large enough n. See
Figure 2. This leads us to conjecture that the QDM could
be very useful as a reactionary controller for evolutionary
robotics if only a linear number of states are important, if it
is unknown what these states actually are, and if the input
space is large. Furthermore, this advantage is gained on a
classical computer without any quantum hardware required.

We also tested the mvebQDM on various evolutionary
robotics tasks (here the value p1 of choosing A1 is used
directly for motor control: p < .3 implying “move left”,
.3 ≤ p ≤ .6 is “forward”, else right - we can get away
with this as this is a simulated quantum process). We are
currently collecting additional evidence, however we have
observed that, when the agent’s input space is large and
unstructured (generally over 200 different possible states),
however if only O(n) of them are actually“important”(there
are only a few “distinguished” states that arise during opera-
tion), then we’ve observed the QDM can greatly outperform
a similar classical device. However when the input space is
small, or well structured, the classical device performs just
as well or better. More experimentation, however, is re-
quired. For more details, see:
walterkrawec.org/robots/gecco14_paper.html.

2. REFERENCES
[1] J. R. Busemeyer and Z. Wang. Quantum information

processing explanation for interactions between
inferences and decisions. Proceedings of the AAAI
Spring Symposium on Quantum Interaction, pages
91–97, March 2007.

[2] Brendan L Douglas and Jingbo B Wang. A classical
approach to the graph isomorphism problem using
quantum walks. Journal of Physics A: Mathematical
and Theoretical, 41(7):075303, 2008.

[3] W.O. Krawec. On the application of quantum decision
making to artificial life. In Evolutionary Computation
(CEC), 2013 IEEE Congress on, pages 3323–3330,
2013.

[4] M.A. Nielsen and I.L. Chuang. Quantum Computation
and Quantum Information. Cambridge University
Press, Cambridge, MA, 2000.

[5] A. Raghuvanshi, Y. Fan, M. Woyke, and M. Perkowski.
Quantum robots for teenagers. In Multiple-Valued
Logic, 2007. ISMVL 2007. 37th International
Symposium on, May 2007.

[6] Alessandro Sordoni, Jian-Yun Nie, and Yoshua Bengio.
Modeling term dependencies with quantum language
models for ir. In Proceedings of the 36th international
ACM SIGIR conference on Research and development
in information retrieval, pages 653–662. ACM, 2013.

[7] Karol Zyczkowski and Marek Kus. Random unitary
matrices. Journal of Physics A: Mathematical and
General, 27(12):4235, 1994.

34

