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ABSTRACT
This paper presents a multi-population genetic algorithm for
procedural generation of levels for platform games such as
Super Mario Bros (SMB). The algorithm evolves four ele-
ments of the game during its generations: terrain, enemies,
coins and blocks. Each element has its own codification,
population and fitness function. At the end of the evolu-
tion, the best four elements are combined to construct the
level. The method has as input a vector of parameters to
configure the characteristics of each element. Experiments
were made to evaluate the capability of the method in gen-
erating interesting levels. Results showed the method can
be controlled to generate different types of levels.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—Games; K.8 [Personal Computing]: [Games]

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Procedural content generation, games, genetic algorithm,
platform, Super Mario Bros

1. INTRODUCTION
Automatic generation of game content has been used for

several purposes inside the game industry. One of the main
purposes is to use it as a tool to generate a huge amount
of content as references for human designers. It can also
be used in real time, inside the games, to generate dynamic
content for players. Recently, procedural content generation
(PCG) has becoming an emerging area of research in game
design. Several PCG methods has been proposed to generate
different content types like tracks for racing games [1], maps
[4], levels [5] and even whole games [2].
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A platform game involves guiding an avatar to jump be-
tween suspended platforms, over obstacles, or both to ad-
vance the game. In the Super Mario Bros (SMB), the main
character must jump between platforms and kill enemies to
save the princess Peach. There are several enemy types and
the platforms are made from blocks, hills and pipes. The
game also has collectable items such as coins and powerups.

In this paper we propose a search-based method for level
generation in platform games like SMB. The method uses
a genetic algorithm to evolve separately four game aspects:
ground, blocks, enemies and coins. Each element inside the
game has its own purpose, so each of them has its own popu-
lation, fitness function and genetic operators. To construct
a level, the algorithm joins the best individual from each
population in the end of the last generation. All the ele-
ments are evolved using a direct fitness function. It means
there is no need to simulate the game during its evaluation
process.

The goal of the developed level generator is to design
several levels with gameplay characteristics specified by the
user. So, it has a parameters vector to configure the charac-
teristics of each game element. We proposed several experi-
ments to evaluate the capacity of the method in generating
interesting levels. Results showed it is possible to config-
ure the method for generating levels with different gameplay
characteristics.

2. METHOD
The proposed genetic algorithm evolves separately the

four game elements, so it keeps four populations during the
evolutionary process. Each population has individuals rep-
resenting an specific type of element. In the end of the
evolution, the best individuals of the populations are used
to form the level.

2.1 Level Representation
Each level element (ground, blocks, enemies and coins) is

represented by an integer vector, where the elements codify
a different data type. Thus, a level is a combination of four
vectors of this type. In the ground’s vector, each element
represents a height 0 ≤ h ≤ 15 of a ground segment in the
level, from the bottom to the top of the screen. The height
h = 0 means there is a gap in that position. The height
limit 15 is given by the height of the game resolution.

The blocks vector has a fixed size given by the level width
lw and each element represents a block type. The index in
the vector is the position where the block will be placed in
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the level. Since there are only four types of blocks, each
element b is inside the interval 0 ≤ b ≤ 4. An element b = 0
means there is no block in that position. The elements from
1 to 4 represent the empty block, the powerup block, the
coin block and the rock block, respectively.

The blocks vector does not have information about the
height of the blocks in the level. As a simplification, the
blocks are placed over the ground in a height where Mario
can hit them. This height hb is limited by the interval 1 ≤
btypes ≤ 4. The 4 limit is based on the Mario maximum
jump height. It is important to highlight the case the height
is equal to 1, because the blocks will only hit if the Mario is
in a small form.

The representations for the enemies and the coins are sim-
ilar to the blocks’ representation. Both have a fixed size
vector based on the level width. In the enemies’ vector each
element represents an enemy type. It does not carry any in-
formation about the height where the enemies will be placed.
Since all the enemies do not fly, all the enemies are placed
over the ground. In the coins’ vector, each integer represents
the height from the ground which the coin will be placed.

2.2 Fitness Function
The ground is evaluated by the concept of entropy [3].

Entropy is a measure of unpredictability of information con-
tent, but it is used here to measure the ground unpredictabil-
ity. The entropy function is applied to ground parts with
size 1 ≤ gpart ≤ lw. gpart is a parameter of the method and
it is useful to control how “unpredictable” the ground will
be. The idea of separating the ground in parts to calculate
the entropy is to avoid having either a flat shape (mini-
mal entropy) in the whole ground or a too uncertain terrain
(maximal entropy). The other game components use the
sparseness [2] concept in their fitness function. An array is
sparse if the average distance between two elements is high.

The method uses parameters to control the sparseness and
the entropy of the elements. This means the fitness func-
tions are normalized and they are actually calculated by the
distance from the fitness of the individual to the desired en-
tropy/sparseness values. The objective of the algorithm is
to minimize this distances.

3. EXPERIMENTATION AND RESULTS
We conducted experiments to test the method’s ability in

designing SMB levels with different gameplay characteris-
tics. To generate different levels we must use different pa-
rameters vectors as input for the method. All the parameter
of the method are summarized in Table 1.

In our first experiment, we wanted to generate levels simi-
lar to initials levels of the original SMB. These levels usually
are responsible to teach the player the core mechanic of the
game. Thus, it must teach the player how to walk and run,
how to jump and teach that he can die, if an enemy touches
him. This is achieved with placing the Mario in the begin-
ning of the level over a flat ground (without gaps) with at
least one“question”block, the level must have also an enemy
coming in the ground from the right of the screen.

The Figure 1 shows the first segment of a level generated
by our algorithm. This segment has similar characteristics
to initials levels of the original SMB. The values for the
parameters used in this experiment are defined in the Table
1.

Parameter Definition Value
lw Level width 200
0 ≤ ge ≤ 1 Desired ground entropy 0
1 ≤ gmin ≤ 3 Ground parts 1
1 ≤ gpart ≤ lw Entropy parts 200
0 ≤ ghmax ≤ 15 Ground maximum height 2
0 ≤ bs ≤ 1 Desired blocks sparseness 1
1 ≤ btypes ≤ 4 Blocks types 3
1 ≤ bpart ≤ lw Blocks sparseness parts 10
0 ≤ es ≤ 1 Enemies sparseness 0
0 ≤ etypes ≤ 4 Enemies types 2
1 ≤ epart ≤ lw Enemies sparseness parts 20
0 ≤ cs ≤ 1 Coins sparseness 0.5
0 ≤ chmax ≤ 10 Coins maximum height 2
cpart Coins sparseness parts 10

Table 1: All the parameters available in the method.

Figure 1: The first segment of a generated level.
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