
Control of Non Player Characters in a Medical Learning
Game with Monte Carlo Tree Search

Maxime Sanselone, Stéphane Sanchez, Cédric Sanza, David Panzoli, Yves Duthen
University of Toulouse, IRIT - CNRS UMR 5505

2 rue du Doyen Gabriel Marty, 31042 Toulouse, France
{maxime.sanselone, stephane.sanchez, cedric.sanza, david.panzoli,

yves.duthen}@irit.fr

ABSTRACT
In this paper, we apply the Monte Carlo Tree Search (MCTS)
method for controlling at once several virtual characters in
a 3D multi-player learning game. The MCTS is used as
a search algorithm to explore a search space where every
potential solution reflects a specific state of the game envi-
ronment. Functions representing the interaction abilities of
each character are provided to the algorithm to leap from
one state to another. We show that the MCTS algorithm
successfully manages to plan the actions for several virtual
characters in a synchronized fashion, from the initial state
to one or more desirable end states. Besides, we demon-
strate the ability of this algorithm to fulfill two specific re-
quirements of a learning game AI : guiding the non player
characters to follow a predefined plan while coping with the
unpredictability of the human players actions.

Categories: I.2.8 [ARTIFICIAL INTELLIGENCE]: Prob-
lem Solving, Control Methods, and search

Keywords: Planning; Monte Carlo Tree Search; Serious
gaming; Artificial intelligence

1. INTRODUCTION
The 3D Virtual Operating Room (3DVOR) project is a

learning game aimed at training the operating room staff to
communicate in the operating room. Through an immersive
3D operating room, the learners control their avatar and
collaborate in a simulated operation. When the pedagogical
interest of some roles is limited, an automated controller has
to handle the behavior of Non-Player Characters (NPCs).
The challenge here is to manage NPCs that have to react as
close as possible to what a human would do, as described as
fully equal partner by Thomas and al. [6].

We have chosen to focus on Monte Carlo Tree Search [1]
to create the AI of the NPCs. This method combines gener-
alization skills of evolutionary methods and the accuracy of
decision trees. The algorithm only uses the authorized ac-
tions and the evaluation of final states. It creates coherent

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07
http://dx.doi.org/10.1145/2598394.2598473.

plans while being a any-time algorithm, capable of giving
the best option in real-time [3, 2].

We show in this article how MCTS can be used to create
an AI capable of controlling many NPC playing a predefined
scenario the same way human players would do.

2. MCTS IN 3DVOR
The method known as Monte Carlo Tree Search (MCTS)

is a search method aiming to take optimal decisions in a
discrete finite environment, according to a search tree gen-
erated across multiple stochastic simulations. Inspired by
both the Monte Carlo and the tree search methods, it rests
on the postulate that a large enough number of simulations,
chosen randomly and accordingly to the previous ones, lead
a trustful picture of the search space. More details about
the MCTS method and its variants can be found in [1].

The resolution method we present in this article is largely
inspired by the MCTS method. It makes use of random sim-
ulations to evaluate best decisions in a particular situation.

The nodes of our search space are associated to states of
the environment. The different actions that any character
can perform are the transitions between nodes in the MCTS.

We use a Directed Acyclic Graph topology for the search
space, using transpositions (see [5]), and the Upper Confi-
dence Bounds for Trees heuristic (UCT).

In simulation phase, because nodes are registered and up-
dated in previous simulation phases, we can use the tree
policy as default policy for each node already in the hash
map instead of an uniformly random default policy.

To avoid behavioral loops and useless actions, we add two
more enhancements. Any selection of a previously selected
node in the same exploration cycle leads to a dead end, with
a back-propagated reward value of zero. As in [4], we use a
decay mechanism to favors shortest plan of actions.

The scenarii scenarios are represented with BPMN dia-
grams. These diagrams are used to constraint our MCTS-
based approach as follows: The diagrams are interpreted to

Figure 1: The learning scenario used in the experi-
mental evaluation.

51



automatically generate mandatory nodes from the scenario,
which are tagged as coming from the scenario and registered
in the hash table. Any mandatory node has a fixed reward
value, depending on the distance between the node and the
initial node in the scenario. The reward of the nodes that
represent the final states of the scenario has a maximal value
of 1.0. Any other mandatory node receives a reward value
equals to 0.99d, with d the minimal number of needed actions
to end the scenario from this node. During exploration, he
rewards from simulation steps are not back-propagated to
the mandatory nodes. However, their presence in the search
graph from the start of the game session, and their fixed re-
ward value, ensure that these nodes are favored by our tree
policies in exploration phase and selected as best option in
exploitation phase.

3. EXPERIENCES
We define a sample scenario on which we apply the MCTS.

The scenario is composed of 27 actions pertaining to 8 in-
teractive objects in the virtual environment, making in total
12 binary properties defining the world semantic represen-
tation. The vector coding a state is represented by a 4 digit
integer.

NA1

NA1

NA2

NA2

NA2

NA2

NA4

NA4

NA4

NA4

NA4

A1

A3

A3

A3

A5

A5

A5

A5

S1

S1

S1S2

S2

S2

S2

S5

S5

S5

S6

S6

NI3

NI3

NI3

NI3

NI4

NI4

NI3

Performed action
Unperformed action
from scenario

Anesthesiologist

Nurse instrumentalist

Nurse anesthesiologist
Surgeon

State
visited, from scenario

not visited, from scenario
visited, not from scenario

Figure 2: Performed actions in 100 gaming experi-
ences with learning scenario.

In this scenario, the surgical team prepares a neurological
operation. Two sub-teams are asynchronous and one part
of the job can be completed before the other. However, the
members of each sub-team must coordinate their actions to
accurately follow the aimed sub-plans.

We added in the research graph precomputed paths, is-
sued from flow sequences from the BPMN model of the
learning scenario. Our approach never proposes an action
that lead to a state outside of the precomputed paths of
the scenario. This ensures that the non-player characters
are playing accordingly to the surgical protocol and the
aimed learning experience. Constraining the MCTS-based
approach even helps to correct the inconsistencies of the en-
vironment modeling. The method does not propose one but
several slightly different plans.

Our MCTS-based approach provides an action each time
an idle NPC requests something to do. During computa-
tional time, the method performs as much as possible explo-
rations to compute a best plan of actions from the actual
state in the environment to the final state of the scenario.
When any character ask for an action, the algorithm answers
with the best so far evaluated action.

The last requested specification of the AI in 3DVor is that
it must replace a player as a ”fully equal partner”. This
means that the AI must acts in order to keep following the
learning scenario as much as possible. In the last experi-
ment, we still use the learning scenario previously described,
but a human player plays as the surgeon.

Experiment shows that when the player deviates from the
learning scenario (by playing moves out of the schedule), the
AI performs as expected: as soon as possible, a NPC guides
the player back in the learning scenario.

Thus simple, these last experience is promising because
we can expect our MCTS-based AI to replace players and
to guide them through the learning scenarios. However, we
must validate our approach with larger scenarios and more
players as soon as the advances in 3DVOR project allows
multi-player gaming.

Acknowledgement: 3DVOR is supported by the 12th

innovation cluster French funding scheme “Fonds Unique In-
terministériel” (FUI).

4. REFERENCES
[1] C. Browne, E. Powley, D. Whitehouse, S. Lucas,

P. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton. A survey of monte carlo
tree search methods. Computational Intelligence and AI
in Games, IEEE Transactions on, 2012.

[2] T. Cazenave. Multi-player go. In Computers and
Games, pages 50–59. Springer, 2008.

[3] J. Kloetzer. Experiments in Monte-Carlo Amazons. J.
Inform. Process. Soc. Japan, 2010-GI-24(6):1–4, 2010.

[4] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In Machine Learning: ECML 2006, pages
282–293. Springer, 2006.

[5] A. Saffidine, T. Cazenave, and J. Méhat. Ucd: Upper
confidence bound for rooted directed acyclic graphs.
Knowledge-Based Systems, 34:26–33, 2012.

[6] D. Thomas and L. Vlacic. Collaborative decision
making amongst human and artificial beings. In
Intelligent Decision Making: An AI-Based Approach,
pages 97–133. Springer, 2008.

52




