Estimation of Distribution Algorithms based on n-gram
Statistics for Sequencing and Optimization

Chung-Yao Chuang
The Robotics Institute
Carnegie Mellon University

cychuang@cmu.edu

ABSTRACT

This paper presents our work on Estimation of Distribution
Algorithms (EDAs) that address sequencing problems, i.e.,
the task of finding the best ordering of a set of items or
an optimal schedule to perform a given set of operations.
Specifically, we focus on using probabilistic models based on
n-gram statistics. These models have been used extensively
in modeling the statistical properties of sequences. We start
with an EDA that uses a bigram model, then extend this
scheme to higher-order models. However, directly replac-
ing the bigram model with a higher-order model results in
premature convergence. We give an explanation on this sit-
uation, along with some empirical support. We then intro-
duce a technique for combining multiple models of different
orders, which allows for smooth transition from lower-order
models to higher-order ones. Furthermore, this technique
can also be used to incorporate other heuristics as well as
prior knowledge about the problem into the search process.
Promising preliminary results on solving Traveling Salesman
Problems (TSPs) are presented.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

1. MODELING WITH N-GRAM STATISTICS

An n-gram is a pattern of n consecutive items, which is
usually a segment from a longer sequence. Such a construct
is often used in the field of natural language processing
(NLP). For example, a classic task in NLP is to estimate
the conditional probability of observing some item (word)
w; as the next item, given the history of items (words) seen
so far. Specifically, we are interested in estimating

P(W; = wi|Wi—pnt1 = Wimnt1,- .-, Wic1 = wi—1)

where the sequence wi,ws, - is some instantiation of a
sequence of random variables Wi, W5 ---. In the following,
we will use P(w;|wi—n+1 -+ wi—1) as a shorthand.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-1964-5/14/07.

http://dx.doi.org/10.1145/2598394.2598399 .

53

Stephen F. Smith
The Robotics Institute
Carnegie Mellon University

sfs@cs.cmu.edu

The obvious first answer to the above formulation is to
suggest using a mazimum likelihood estimate (MLE):
C(Wi—nt1 - Wi—1w;)
veV C’(wi_m_l e wi_lv)
where C(w;—n+1 - -w;) is the frequency of a certain n-gram
in training samples, and V is the set of possible items. How-
ever, a drawback is that MLE assigns a zero probability to
unseen events, which effectively zeros out the probability of
sequences with component n-grams that just happened not
appearing in the training samples. For our scenario, this
creates a risk of arbitrarily discarding some portion of the
unexplored search space. A simple solution used in this work
is to smooth the distribution with some pseudocount k:

C(Wimnt1 - wWi—1w;) + K
Euev (C(wi—'n+1 S wi—1v) + K)

where k is usually set to a value smaller than 1.

Puve (Wi|Wi—ng1 - - wi—1) = 5

Pn(wilwi—n+1 te wi—l) =

2. USING N-GRAM MODELS IN EDAS

In this work, instead of generating an entire solution anew,
we first take an existing solution from current population
and randomly extract a subsequence from it. This segment
will then be taken as the starting point of new solution and
serve as the “history” on which further sampling is based.
This kind of partial sampling technique has been used pre-
viously [2, 4], achieving better usage of diversity. For our
purpose, this has an additional benefit of providing a conve-
nient basis to initialize the sampling from n-gram models.

To summarize the overall flow of the algorithm: At each
iteration, we first estimate an n-gram model from the cur-
rent population. To generate a new solution, we use par-
tial sampling on an existing solution in the current popu-
lation. Each solution in the current population is visited
once for such sampling. Following each partial sampling, a
replacement competition is hold between the new solution
and the one from which the starting segment was extracted.
Note that we use replacement as the sole means for selecting
promising solutions, i.e. better solutions are preserved un-
der the replacement process. This is similar to the evolution
strategy, in which every solution in the current population is
seen as potentially good solution because they have survived
previous replacement competitions.

As a first step, we experimented with a bigram model,

C(wiflwi) + K
> vev (C(wi1v) + K)
for solving a 48-city TSP, gr48*. Let £ denote the problem
size. The population size N is set to 5¢, the pseudocount

“http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

PQG(wi"lUi—l) =




Table 1: Preliminary Experiments on gr48

Success # of Evaluations

Method Rate mean std
2G 30/30 277024 34535.4
3G 9/30 224640 118490.2
2G 800 iter. 3G 30/30 240032 20753.3
2G+3G 30/30 230048 23985.8
2G+3G+DH 30/30 154984 20243.5

x = 0.01, and termination criterion is when either the opti-
mal tour is found or when the algorithm reaches 50/ itera-
tions. The result of the experiment is presented in Table 1.
It shows the success rate in finding the optimal tour and
the average number of function evaluations used among the
successful runs. It can be seen that the bigram approach
gives a pretty decent performance. A tempting thought to
proceed is to directly replace the bigram with a trigram
C(wi—gwi—1w;) + K

> vev (Clwi—2wi—1v) + K)

for learning the patterns, but this results in a significant
drop in success rate. Our explanation is that at early stage
of a run, there are not so many long patterns that are of
good quality. If we attempt to use a higher-order model to
learn longer patterns when there are none, we will end up
encoding mediocre patterns into the model. To provide some
empirical support, we modified the process to begin with a
bigram and switch to trigram after 800 iterations. As shown
in Table 1, this remedies the problem. However, choosing
an adequate switching point is nontrivial task. To address
the issue, we propose combining multiple models of different
orders and use a set of weights to control the emphasis.

3. COMBINING MULTIPLE MODELS

Specifically, we formulate the synthesis of K models as

P(w;|h;) = Z Aj Pj(wilh;) (1)

Psg(ws|wi—sw;—1) =

where h; represents the history of items seen so far and A;
is the weight associated with the jth model s.t. A; > 0 and
>-; A = 1. A combination of bigram and trigram will be

Pogisc(wilh;) = Aog Pac(wilwi—1) + Asg Paa (wi|wi—ow;—1)

Assuming that we want to combine K models, then we
have to determine K weights, A1, A2, ..., Ak, associated with
those models. To do this, we reserve a portion of the pop-
ulation for the task of estimating those A;’s. Suppose that
there are M items in such a holdout set for which we can
give conditional probabilities. For each model P;, we create
a stream p; = (pj1,pj2, - - -, pjm) where pj; is the probability
of item w; predicted by the model P;, i.e., pj; = P;(w;|h;).
These K probability streams (each of length M) are then

Algorithm 1 Estimating the Weights \;’s
Input: a set of probability streams {p;} where 7 =1 to K.
Each p; = (pj1,pj2,---,pjm) is of length M.

e qs 0) _ (0 (0) K 4(0) _
Initialize A(¥) = A7 st A >0and 3000 A =1
repeat

j=1...K, update: )\;tﬂ) =

t=t+1
until the difference between A® and A®) is small
return A®

®

1 M A Pji
i=1 t

W 2=t T

54

1 1 1 1 1 1 I
200 300 400 500 GO0 700
lterations

1]
0 100

Figure 1: Weight variation: combining of bigram,
trigram and distance heuristics for solving gr48.

Table 2: Performance Comparison on pr76

Success # of Evaluations
Method N Rate mean std
(04 960 0/10 N/A N/A
eER 960 3/10 394887 22321
PMX 960 0/10 N/A N/A
EHBSA-WT 120 9/10 457147 65821
2G+3G 120 10/10 405660 54893
2G+3G+DH 120 10/10 195960 28123

used as the input to Algorithm 1 [3]. The resulting A;’s
optimize the average likelihood w.r.t. this holdout set.
Note that this technique can also be used to incorporate
other heuristics into the search. For example, if we want to
add a distance-based heuristic for TSP into the search mech-
anism, we could do so by crafting an “artificial distribution”

(d(wi—1,w;)) """
S ey (d(wi1, )7

where d(u, v) is the distance between city v and city v. This
assigns a larger probability mass to a city that has shorter
link to the last city in the partial tour constructed so far.
To illustrate the search behavior, Figure 1 shows the vari-
ation of weights in a typical run that uses a combination of
Psa, Psq and Ppu. The performance of these methods on
gr48 are also shown in Table 1 (with 10% of the population
as the holdout set.) To provide some comparison to other
approaches, we adopt the results of [4] on pr76, a 76-city
TSP. Table 2 lists their method, EHBSA-WT, along with
3 classical GA approaches, OX, eER, and PMX. Note that
EHBSA-WT gave the best empirical performance in [1].

4. REFERENCES

[1] J. Ceberio et al. A review on estimation of distribution
algorithms in permutation-based combinatorial
optimization problems. Progress in Artificial
Intelligence, 1(1):103-117, 2012.

C.-Y. Chuang and Y.-p. Chen. On the effectiveness of
distributions estimated by probabilistic model building.
In Proceedings of GECCO-2008, pages 391-398.

F. Jelinek and R. L. Mercer. Interpolated estimation of
markov source parameters from sparse data. In Pattern
Recognition in Practice, 1980.

S. Tsutsui, M. Pelikan, and D. E. Goldberg. Using edge
histogram models to solve permutation problems with
probabilistic model-building genetic algorithms.
Technical Report 2003022, 2003.

Pou(wi|wi—1) =

2]

3]

(4]





