
A Two-level Hierarchical EDA using Conjugate Priori

Bo Wang, Hua Xu, Yuan Yuan
State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

wbthu@outlook.com, xuhua@tsinghua.edu.cn, yyxhdy@gmail.com

ABSTRACT
Estimation of distribution algorithms (EDAs) are stochastic
optimization methods that guide the search by building and
sampling probabilistic models. Inspired by Bayesian infer-
ence, we proposed a two-level hierarchical model based on
beta distribution. Beta distribution is the conjugate priori
for binomial distribution. Besides, we introduced a learning
rate function into the framework to control the model up-
date. To demonstrate the effectiveness and applicability of
our proposed algorithm, experiments are carried out on the
01-knapsack problems. Experimental results show that the
proposed algorithm outperforms cGA, PBIL and QEA.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search;
G.1.6 [NUMERICAL ANALYSIS]: Optimization

Keywords
Artificial intelligence, Combinatorial optimization, Empiri-
cal study

1. INTRODUCTION
In evolutionary computation community, researchers have

proposed a kind of algorithms named estimation the distri-
bution algorithms (EDAs), also called probabilistic model-
building genetic algorithms and iterated density estimation
evolutionary algorithms [4]. EDAs evolve an explicit proba-
bilistic model to guide the search. In EDAs, the exploration
and exploitation are fundamental problems just like other
evolutionary algorithms (EAs)[1]. Exploration is the pro-
cess of searching the new regions, while exploitation is the
process of visiting the neighborhood of previously visited
points. Excessive exploration results in unsatisfactory solu-
tion and excessive exploitation leads population into local
optima. Hence an evolutionary algorithm needs to balance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distribut-
ed for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598470.

these two antagonistic cornerstones to get superior perfor-
mance.

Inspired by Bayesian inference, we proposed a two-level
hierarchical EDA (THEDA) adopting beta distribution. We
also proposed a learning rate function alongside the update
of the two-level model to balance the exploration and ex-
ploitation explicitly. At the beginning of the searching, the
learning rate is small, so to promote exploration. With the
increase of the number of generations, learning rate become
larger and algorithm tend to exploitation.

We provide in section 2 a description of the proposed algo-
rithm. Experimental results on 0-1 knapsack problems are
in section 3. Finally, section 4 concludes with a summary
and a discussion of future work.

2. A TWO-LEVEL HIERARCHICAL EDA
The framework of THEDA is basically the same with oth-

er EDAs except that THEDA uses a two-level model. Algo-
rithm 1 gives the pseudocode of the THEDA.

Algorithm 1 Framework of THEDA

1: t← 0
2: initialize the probability vector PV
3: while termination criteria not met do
4: P ← generate individuals by sampling PV
5: S ← select from P according to their fitness
6: betaV ← updateModel(S, t)
7: PV ← generate by sampling betaV
8: t← t+ 1
9: end while
10: procedure updateModel(S, t)
11: for i = 1, 2, . . . , l do
12: c1 ← number of 1s in the ith dimension of S
13: c0 ← number of 0s in the ith dimension of S
14: (betaVi).α← 1 + c1 × fL(t)
15: (betaVi).β ← 1 + c0 × fL(t)
16: end for
17: return betaV
18: end procedure

The first level is from beta vector (βV ) to probability
vector (PV ) and the second level is from PV to popula-
tion consisted of solutions. In our approach, the selected
individuals are used to estimate a βV . The βV can gener-
ate the PV from which the individuals are sampled. The
βV is an array of pairs. Each pair (e.g. αi, βi) includes
two numbers defined on [1,+∞) and it determines a beta

57



distribution. Therefore, a βV represents an array of beta
distribution. We limited the domain of numbers in beta
vectors to be on the interval [1,+∞) in spite of that, pa-
rameters of beta distribution are numbers greater or equal
to 1. This restriction ensures that the mode does not occurs
at one or both ends. Beta distribution has only two parame-
ters which have intuitive significance. In Bayesian inference,
α and β of beta distribution represent the number of 1s and
0s in observed data respectively. Therefore, the update of
beta vector just needs a count of the number of 0s and 1s
for each position. This is computationally efficient. We de-
signed a learning rate function for controlling the search. A
learning rate function is defined as a simple linear function
as fL(t) = c × t, where c is the coefficient determining the
learning rate and t is the number of generations.

3. EXPERIMENTAL RESULTS
This section reports the experimental results of the pro-

posed algorithm on 01-knapsack problem comparing with
cGA, PBIL and QEA. The 01-knapsack problems is a well-
known combinatorial optimization problem [3]. The data are
generated as follows: wi = uniformly random[1, 10], pi =
wi + 5, where wi and pi are the weight and the value of the
ith item respectively. Two types of capacity were used, one
is the half of the total weight of all items (Ch = 1

2

∑N
i=1 wi),

and the other is a fixed value, that is Cf = 20. To satisfy the
constraint, a random repair operator were used, see the de-
tails in [2]. Algorithms were tested on 01-knapsack problems
of size 250, 500, 1000, 2000. For each size, two capacities
mentioned above were used. These instances were denot-
ed by Pknp D Ch, Pknp D Cf where D should be replaced by
the size of the problem. Algorithms were tested on each in-
stances within 40,000 evaluations. The best solutions ever
found from 50 independent runs by these four algorithms
were stored and averaged.

For cGA, the virtual population number is set to be n =√
π
2

√
D logD as reported in [5]. For PBIL, population size

n, learning rate L, probability of mutation Pm and the shift
amount for mutation S are set to be 20, 0.1, 0.02 and 0.05
respectively. For QEA, all parameters were same as the orig-
inal literature [2]. In the proposed THEDA, the population
size n, proportion of selection Ps and the learning coefficient
c are set to be 200, 0.1 and 0.5 respectively.

On Pknp 250 Ch and Pknp 500 Ch, the performances of cGA,
PBIL and the proposed THEDA are similar to each other.
For Pknp 1000 Ch and Pknp 2000 Ch, the THEDA is superior
to others. Premature convergence of PBIL resulted in infe-
rior solution. The cGA could find solution having the same
quality. But cGA is slower than THEDA.

On Pknp 250 Cf , PBIL was faster than THEDA before
4, 000 evaluations and then decelerate quickly. THEDA had
a better mean of the best solutions and a relatively small-
er standard deviation than that of PBIL. We found that
premature convergence is gradually becoming a serious de-
fect to PBIL as the population size increases. Especially, on
Pknp 2000 Cf , PBIL startup quickly till 10, 000 evaluation-
s, but it prematurely converged to solutions whose fitness
are about 75. While the fitness of the best solution found
by the proposed THEDA maintained steady growth from
beginning to 30, 000 evaluations. The mean of the final so-
lutions offered by THEDA was 109.091 with a standard de-
viation 1.8311. The results on Pknp 2000 Ch and Pknp 2000 Cf

are shown in 1.

Figure 1: The Result on Pknp 2000 Ch and Pknp 2000 Cf

4. CONCLUSION AND FUTURE WORK
A proper way to balance exploration and exploitation is

an essential part of an effective evolutionary algorithm. The
core of EDA is the model and the update method. We regard
the model building from fittest individuals as an inference.
Inspired by Bayesian inference, we used a two-level hierarchi-
cal model involving beta vector and probability vector. We
also design a function of generation number to control the
exploration and exploitation along with the model updating.
THEDA was tested on 01-knapsack problems. The results
showed that THEDA outperformed cGA, PBIL and QEA.
Its advantage was amplified as the increase of the problem
size. There are several issues required to be studied in the
future work. For example, the design of this learning rate
function will need more detailed research. Besides, THEDA
uses prior probability which can contain prior knowledge of
the problem. One can try to enhance THEDA by introduc-
ing prior knowledge into it. Last but not least, there should
be a detailed study on parameter settings.

Acknowledgment
This work is supported by National Natural Science Foun-
dation of China (Grant No: 61175110), National Basic Re-
search Program of China (973 Program) (Grant No: 2012CB
316305), National S&T Major Projects of China (Grant No:
2011ZX02101-004) and National Banking Information Tech-
nology Risk Management Projects of China.

5. REFERENCES
[1] M. Črepinšek, S.-H. Liu, and M. Mernik. Exploration

and exploitation in evolutionary algorithms: a survey.
ACM Computing Surveys (CSUR), 45(3):35, 2013.

[2] K.-H. Han and J.-H. Kim. Quantum-inspired
evolutionary algorithm for a class of combinatorial
optimization. Evolutionary Computation, IEEE
Transactions on, 6(6):580–593, 2002.

[3] S. Martello and P. Toth. Knapsack Problems:
Algorithms and Computer Implementations. John
Wiley & Sons, Inc., New York, NY, USA, 1990.

[4] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey
of optimization by building and using probabilistic
models. Computational optimization and applications,
21(1):5–20, 2002.

[5] M. D. Platel, S. Schliebs, and N. Kasabov.
Quantum-inspired evolutionary algorithm: a
multimodel eda. Evolutionary Computation, IEEE
Transactions on, 13(6):1218–1232, 2009.

58




