
An Algorithm for Evolving Multiple Quantum Operators for
Arbitrary Quantum Computational Problems

Walter O. Krawec
Stevens Institute of Technology

Hoboken NJ, 07030
walter.krawec@gmail.com

ABSTRACT
We design and analyze a real-coded genetic algorithm for
the use in evolving collections of quantum unitary operators
(not circuits) which act on pure or mixed states over arbi-
trary quantum systems while interacting with fixed, problem
specific operators (e.g., oracle calls) and intermediate par-
tial measurements. Our algorithm is general enough so as
to allow its application to multiple, very different, areas of
quantum computation research.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

Keywords
Quantum Computing; Quantum Algorithms; Real Coded
Genetic Algorithm

1. ALGORITHM DESIGN
By now, several authors have investigated the use of evo-

lutionary algorithms to construct quantum algorithms. The
majority of this work (see for instance [4, 2]) consists of using
evolutionary techniques to construct quantum circuits (col-
lections of basic quantum gates). In [1], Hutsell and Green-
wood first considered evolving, using an evolutionary strat-
egy approach, not quantum circuits, but arbitrary quantum
unitary operators. There are several advantages to both ap-
proaches: evolving quantum circuits seems more desirable
for finding quantum algorithms; evolving arbitrary quantum
operators though can be useful for more abstract work.

In this paper, we greatly extend the work of [1] by de-
signing a real-coded GA that, given a rule set from the user
which can be used to describe several very different prob-
lems, evolves multiple quantum operators which can act on
arbitrary quantum systems over arbitrary pure or mixed ini-
tial states (the reader is referred to [3] for an introduction
to quantum computation). More specifically, our algorithm

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2881-4/14/07.
http://dx.doi.org/10.1145/2598394.2598408.

evolves unitary operators {Ui}Λi=1 conforming to a specified
RuleList given by the grammar:

RuleL i s t :− {(I n i t i a l S t a t e , Rule) ; }+

Rule :− {({Op}∗) : (Pr)}+

Op :− Ui | Vi | Mi | Mi,j | Ti

Pr :− {p : [{ space : b a s i s }+]}+

I n i t i a l S t a t e :− (p s i 0) | (pure , vec to r)
| (mixed , matrix)

After specifying the dimension of the underlying Hilbert
space H (and all underlying subspaces if any; that is, we
constructH = H1⊗· · ·⊗Hn), along with matrices describing
the fixed, problem specific Vi operators (these may be oracle
calls for example), the user next constructs a RuleList.

To compute the fitness of a candidate solution {Ui} given
a RuleList, each Rule, which is itself a list, is evaluated in-
dividually and each entry of this Rule is considered sequen-
tially. To evaluate the i’th Rule, we first construct density
matrix ρi,0 using the i’th InitialState description (which
may be a matrix or vector description; alternatively it could
be a default state |ψ0〉 〈ψ0|). After this, we apply all opera-
tors specified by the first Op list (these can include measure-
ment operators M and mixtures of U , V , and M operators -
these we call T operators) resulting in a new density matrix
ρ′i,0 from which we may compute the fitness with respect to
the first Pr entry which is of the form:

Pri,1 = p1:[space1,1:basis1,1,space1,2:basis1,2,· · ·],

p2:[space2,1:basis2,1,space2,2:basis2,2,· · ·], · · ·

This list represents the rule that, with probability pj , if sub-
space spacej,1 and spacej,2 etc. are measured, we should
receive outcome |basisj,1〉 and |basisj,2〉 and so on. We
assume the computational basis |1〉 , |2〉 , · · · for all measure-
ments. Since we support V operators (which may be used
to change bases), this is without loss of generality. Let qi,j

be the actual probability of such a measurement outcome as
specified by the j’th entry of Pri,1; this is computed as:

qi,j := tr

 Y
k

M(spacej,k, basisj,k)ρ′i,0

!
,

where M(a, b) is the measurement operator, acting on sub-
space a projecting to |b〉; that is M(a, b) = I ⊗ |b〉 〈b|a ⊗ I
where the first I is the identity on all subspaces to the
left of Ha and the second is on all subspaces to the right.
The fitness of the first entry of the Rule then is defined as:
fi,1 =

P
pj∈Pri,1

(qi,j − pj)2.

59

Figure 1: Left: Showing how step-size affects fitness
of a population over each generation (using the Ba-
sic Experiment, with m = 16). The notation [0, x]
implies a single random value was chosen as the
step size, in the specified interval, whenever mutate
was first called; R[0, x] implies a random value within
[0, x] was chosen individually for each value mutated.
Right: Fitness of Deutsch-Jozsa test

To progress to the second entry of the i’th Rule, we repeat
the above using ρi,1 =

P
j,k M(j, k)ρ′i,0M(j, k) as our new

initial state, where the sum is over all subspaces j that were
measured (determined by Pri,1) and all basis states k in
that subspace. This density matrix represents the (mixed)
state resulting from an unobserved measurement on these
subspaces. After repeating for each entry of the i’th Rule,
we compute the fitness of this rule, denoted fi as: fi =
1

Ni

PNi
j=1 fi,j where Ni is the number of elements in the i’th

Rule. After all Rules in the RuleList are evaluated in this
fashion, the fitness of a candidate solution {Ui} is taken to
be the average of these: f({Ui}) = 1

N

P
j fj .

To represent a solution, we employ the same method as
in [1], described in [5], which decomposes a D ×D unitary
matrix (with complex entries) into D2 elementary unitary
transformations and a single phase change, requiring D2 + 1
real parameters in the range [0, 2π].

Mutation will alter, for each operator Ui, 80% of these
D2

i + 1 parameters (each Ui has its own parameters - fur-
thermore, our algorithm allows operators to act only on sub-
spaces of H; thus each operator may have different dimen-
sion Di) increasing or decreasing their values by an amount
called the step size. We found setting this value to a random
number in [0, π/10] produced very good results. See Figure
1 (left). Crossover is simple one-point crossover, treating
each Ui individually. From this we constructed a hybrid
real coded GA (with elitism) with a localized hill-climbing
search. After applying crossover (using tournament selec-
tion) and mutation, we take the very best solution and per-
form a local search on it (using the mutation routine).

We first evaluated our algorithm on the Basic Experiment
described in [1] which involves the search for a single U1

that, after applied to the state |ψ0〉 = 1√
m

Pm
i=1 |i〉 in the

m-dimensional space H = H1, we should measure |1〉 with
probability 1. Using our rule grammar this is simply:

((p s i 0) : (U . 0) : (1 : [1 : 1])) ;

We ran this test for m ∈ {16, 20, 24, 32}. Our stopping con-
dition was a fitness value of less than 0.01 which represents
an incorrect measurement result (e.g., a measurement re-
sult of |i〉1 for i 6= 1) of less than 10%. We note that the

stopping condition used in [1] was to have an incorrect mea-
surement result less than 30% of the time, an easier condi-
tion to achieve, and yet the GA/HC approach we use seems
to converge remarkable faster. For example, with m > 16,
they were, using a (100 + 100) ES, unable to get conver-
gence after more than 450 generations. We, however, for
m = 16, achieved our stopping condition after less than 32
generations (average over 20 independent trial runs). For
m = 20 we required less than 50, m = 24 required 60. Un-
fortunately we are not sure if this is strictly because of our
GA+HC approach or perhaps we have fine-tuned our ge-
netic parameters better (or some combination of the two).
As Figure 1 (left) shows, this problem is highly susceptible
to these parameters.

We also tested our approach by having it evolve an al-
gorithm which functions similarly to the Deutsch-Jozsa al-
gorithm [3] - a quantum algorithm which, after interacting
with an oracle gate only once (the oracle implements a func-
tion f : {0, 1, · · · ,m− 1} → {0, 1} which is either balanced
or constant - these oracles are implemented as V operators
in our algorithm), is able to determine a certain property
of this oracle (namely, whether the function is balanced or
constant). While solved using other evolutionary algorithms
[4, 2], it serves as a good “stress-test” as it requires

`
m

m/2

´
+2

“V ” operators and at least as many rules which are of the
form:

((p s i 0) : (U. 0 , V. 0 , U . 1) : (1 : [2 : 1])) ;
((p s i 0) : (U. 0 , V. 1 , U . 1) : (1 : [2 : 1])) ;
((p s i 0) : (U. 0 , V. 2 , U . 1) : (0 : [2 : 1])) ;
((p s i 0) : (U. 0 , V. 3 , U . 1) : (0 : [2 : 1])) ;
. . .

Here V0 and V1 are the two constant oracles; the underlying
Hilbert space is H1⊗H2 of dimension 2 and m respectively.
See Figure 1 (right) for the results.

More information (including an extended version of this
paper with further evaluations in other areas of quantum
computation), and full source code for our implementation
(written in C++) is available online:
walterkrawec.org/math/QuantumOp.html.

2. REFERENCES
[1] S. R. Hutsell and G. W. Greenwood. Applying

evolutionary techniques to quantum computing
problems. In IEEE Congress on Evolutionary
Computation (CEC 2007), pages 4081–4085, September
2007.

[2] Paul Massey, JohnA. Clark, and Susan Stepney.
Evolving quantum circuits and programs through
genetic programming. In Kalyanmoy Deb, editor,
Genetic and Evolutionary Computation, GECCO 2004,
volume 3103 of Lecture Notes in Computer Science,
pages 569–580. Springer Berlin Heidelberg, 2004.

[3] M.A. Nielsen and I.L. Chuang. Quantum Computation
and Quantum Information. Cambridge University
Press, Cambridge, MA, 2000.

[4] L. Spector. Automatic Quantum Computer
Programming: A Genetic Programming Approach.
Kluwer Academic Publishers, Boston, MA, 2004.

[5] Karol Zyczkowski and Marek Kus. Random unitary
matrices. Journal of Physics A: Mathematical and
General, 27(12):4235, 1994.

60

