
SEA: An Evolutionary Algorithm based on Spherical
Inversions

Juan Pablo Serrano
Rubio

Center for Research in
Mathematics (CIMAT)
Guanajuato, Mexico
jpsr@cimat.mx

Arturo Hernández
Aguirre

Center for Research in
Mathematics (CIMAT)
Guanajuato, Mexico
artha@cimat.mx

Rafael Herrera Guzmán
Center for Research in
Mathematics (CIMAT)
Guanajuato, Mexico

rherrea@cimat.mx

ABSTRACT
This paper introduces the Spherical Evolutionary Algorithm
(SEA) for global continuous optimization. Two new geomet-
ric search operators are included in the design of the SEA.
The operators are named: Inversion Search Operator (ISO)
and Reflection Search Operator (RSO). This paper describes
the general implementation of SEA and its performance is
analyzed through a benchmark of 10 functions.
Track: Evolution Strategies and Evolutionary Program-

ming.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
Evolutionary Algorithm, Explore and Exploit, Geometric
Search Operators.

1. INTRODUCTION
In general, an evolutionary algorithm is defined by the

reproduction and/or mutation operators to create new in-
dividuals. The reproduction and mutation operators define
the search mechanism of the algorithm. Some evolution-
ary algorithms have been studied from a geometric perspec-
tive [2, 3]. Therefore, the search space can be considered
as a geometric space where the new offspring have a rela-
tion of distance with the parents. This paper introduces
an evolutionary algorithm with two geometric search opera-
tors named Inversion Search Operator (ISO) and Reflection
Search Operator (RSO).

2. IMPLEMENTING THE SEA
A pseudo-code for SEA is shown in Algorithm 1. The

SEA performs either the ISO or the RSO operators with a
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probability of 0.5. The geometric search operators are de-
fined over a hyper-sphere which delimit the region of search
space to produce a new offspring solution with respect to
the position of the parents.

Algorithm 1 Pseudo-code of the SEA.
procedure SEA

/* d: dimension of the problem
ps: population size
η: Number of hyper-spheres for inverse points */

/∗1. Initialize a population ∗/
Pop ← {x(1), x(2), ..., x(ps)}; where the individual x(i) ∈ Rd

t← 0
while not stopping condition do
P ← Select the best η individuals.
for i← 1 to ps do

/∗2. Select a center of the hyper-sphere∗/
repeat

c← select randomly one from P
until c ̸= x(i)

if U(0, 1) ≥ 0.5 then
/*3. Inversion Search Operator*/

y ← InversionSearchOperator(c, x(i))
else

/∗4. Reflection Search Operator*/

y ← ReflectionSearchOperator(c, x(i))
end if
if fitness(x(i)) > fitness(y) then

x(i) ← y /∗5. Replace the individual∗/
end if

end for
t← t + 1

end while
end procedure

The ISO is presented in the Algorithm 2. The heart of
the ISO is the inversion with respect to a hyper-sphere [1].
The main steps of ISO which furnish and enhance the search
capability of the SEA are listed as follows:

• Mutation for the center of the hyper-sphere.

• Calculation of the radius r of the hyper-sphere.

• Calculation of the inverse point in the acceptable re-
gion.

The inverse point of x is x∧, and c is the center of the hyper-
sphere. In order to restrict the inversion to an acceptable
region (close to the inversion hyper-sphere), we use two more
hyper-spheres. These two hyper-spheres have the same cen-
ter but different radii

α = re
−1
r and β = re

1
r .
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Algorithm 2 Pseudo-code of the Inversion Search Opera-
tor.

procedure InversionSearchOperator(c, x)
/*1. Mutation for the center
if U(0, 1) ≥ 0.5 then

k ← Select randomly one component of the center
ck ← ck + N(0, 1)

end if
/*2. Calculate the radius of the hyper-sphere*/
r ← 2(U(0, 1))(∥ c− x ∥2)
if ∥ c− x ∥> 0 then

/*3. Compute the inverse point*/

x∧ ←
(

r2

∥c−x∥

)(
c−x

∥c−x∥

)
+ c

/*4. Calculate the acceptable regions */

α← r

(
e
−1
r

)
; β ← r

(
e

1
r

)
if ∥ x∧ − c ∥< α then

x∧ ← α
(

c−x∧
∥c−x∧∥

)
+ c

else if ∥ x∧ − c ∥> β then

x∧ ← β
(

c−x∧
∥c−x∧∥

)
+ c

end if
else

x∧ ← x /* The individual does not change*/
end if
return x∧

end procedure

The pseudo-code of the RSO is presented in Algorithm
3. The RSO redistributes the points on the surface of the
hyper-sphere.

Algorithm 3 Pseudo-code of the Reflection Search Opera-
tor.

procedure ReflectionSearchOperator(c,x)

vradius ← x− c
for j ← 1 to d do

if U(0, 1) ≥ 0.5 then

vradius
j ← (−1)(vradius

j )
end if

end for
vnew ← vradius + c
return vnew

end procedure

3. EXPERIMENTS
A benchmark of 10 functions is listed in Table 1. The

population size of the SEA is set to 129 and the number of
hyper-spheres is set to η = 9. The problem dimensionality
is set to 30 dimensions (d). 50 runs were made for each
function. The stop criteria is given true when the number
of Fitness Function Evaluations (FFEs) reach 1e+06 or the
current Best Fitness Value (BFV) is smaller than the ob-
jective threshold (1e-10). Table 2 reports the FFEs, BFV,
Worst Fitness Value (WFV) and Success Rate (SR) reached
by the SEA in the tested functions.

4. CONCLUSIONS
In this paper, we proposed the SEA. According to numer-

ical experiments the ISO and RSO furnish and enhanced
the search capability of the algorithm. The ISO computes
the inverse point with respect to the hyper-spheres and an
acceptable region is implemented to guide the search. RSO
mutates an individual repositioning it on the hyper-sphere.
The nonlinear geometric nature of the ISO enhances the
search capability of the algorithm.

Table 1: Benchmark functions.
Sphere Model: f1(0) = 0

f1(x) =
∑d

i=1 x2
i , −100 ≤ xi ≤ 100.

Generalized Rosenbrock’s Function: f2(1) = 0.

f2(x) =
∑d−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
, −30 ≤ xi ≤ 30.

Generalized Rastrigin’s Function: f3(0) = 0

f3(x) =
∑d

j=1

[
x2
i − 10cos(2πxi) + 10

]
, −5.12 ≤ xi ≤ 5.12,

Ackley’s Function: f4(0) = 0

f4(x) = −20exp
(
−0.2

√
1
d

∑d
i=1 x2

i

)
− exp

(
1
d

∑d
i=1 cos(2πxi)

)
+20 + e, −32 ≤ xi ≤ 32

Ellipsoid Function: f5(0) = 0

f5(x) =
∑d

i=1 10
6
(

i
d−1

)
x2
i , −10 ≤ xi ≤ 5

Cigar Function: f6(0) = 0

f6(x) = x2
1 +

∑d
i=2 106x2

i , −10 ≤ xi ≤ 5
Tablet Function: f7(0) = 0

f7(x) = 106x2
1 +

∑d
i=2 x2

i , −10 ≤ xi ≤ 5.
Cigar Tablet: f8(0) = 0

f8(x) = x2
1 +

∑d−1
i=2 104x2

i + 108x2
d, −10 ≤ xi ≤ 5.

Different Powers: f9(0) = 0

f9(x) =
∑d

i=1 |xi|
2+10 i−1

d−1 , −10 ≤ xi ≤ 5.
Parabolic Ridge: f10(5, 0, 0, ..., 0) = −5
f10(x) = −x1 + 100

∑d
i=2 x2

i , −10 ≤ xi ≤ 5.

Table 2: Descriptive statistics fitness function eval-
uations. Threshold to reach ≤ 1e-10.
f SEA Values

FFEs BFV WFV BFV SR
Mean Std.Dev. Mean Mean Std.Dev.

f1 5.37e+04 1.36e+03 8.86e-11 9.98e-11 7.14e-12 100%
f2 6.16e+05 5.91e+04 9.45e-11 1.00e-10 6.72e-12 100%
f3 1.86e+05 2.03e+04 8.82e-11 9.98e-11 9.24e-12 100%
f4 9.45e+04 3.95e+03 9.39e-11 9.97e-11 4.28e-12 100%
f5 6.44e+04 1.81e+03 8.79e-11 9.78e-11 7.81e-12 100%
f6 7.28e+04 1.81e+03 9.03e-11 9.95e-11 6.83e-12 100%
f7 5.34e+04 1.49e+03 8.64e-11 9.89e-11 6.96e-12 100%
f8 6.78e+04 1.83e+03 8.70e-11 9.97e-11 7.84e-12 100%
f9 3.09e+04 1.65e+03 8.12e-11 9.90e-11 1.17e-11 100%
f10 6.17e+04 1.89e+03 -5.00e+00 -5.00e+00 1.10e-11 100%
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