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ABSTRACT
This work presents a differential evolution algorithm for
combinatorial optimization, in which a set-based represen-
tation and operators define subproblems that are used to
explore the search space. The proposed method is tested on
the capacitated centered clustering problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—heuristic methods; G.2.1 [Discrete
Mathematics]: Combinatorics

General Terms
Algorithms

Keywords
Differential evolution, heuristics, combinatorial optimization

1. INTRODUCTION
Specific heuristics and metaheuristics are found in the lit-

erature to solve a wide variety of combinatorial optimiza-
tion problems, as many of these problems are known to be
NP-hard. In the last two decades, the differential evolu-
tion (DE) [10] metaheuristic has drawn attention due to its
simplicity and efficiency in solving continuous optimization
tasks. These features have inspired attempts at adapting
the DE for the solution of combinatorial optimization prob-
lems [6, 7], but in general results have not met expectations.
In most cases, adaptations have been found to perform little
more than a random search in the space of solutions [9].

We have recently reported preliminary results for a set-
based representation and specific operators to effectively
adapt the DE structure for combinatorial optimization [3].
In this work we extend those results by using specific heuris-
tics to solve the subproblems defined by the proposed DE
on instances of the capacitated centered clustering problem.
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2. PROPOSED METHOD
In combinatorial optimization one is interested in choos-

ing a subset of elements from a given set of possibilities such
that some objective is minimized, subject to possible con-
straints. Since combinatorial optimization consists mainly
of exploring a search space that can be described by a set,
if follows that sets can be regarded as a natural encoding
for these problems. In the proposed method we employ set-
based representations to encode candidate solutions, e.g., [8]
for graph-based problems. To operate in this set-based en-
coding, the mutation and crossover operators are redefined
as set operations:

Vi,g = Xr ∪ ψ(Xr1,g ⊕ Xr2,g) (1)

Ui,g = Vi,g ∪ Xi,g (2)

where Xr is a randomly generated candidate solution, and
r1 6= r2 6= i ∈ [1, np] are random integers. The sum and sub-
traction operations of the original DE are replaced by union
and exclusive-or logical operations. The mutation operator
works like the original one, that is, adding the difference be-
tween two solutions to a third one. A randomly generated
base Xr is used to introduce diversity. The scalar weighting
factor ψ ∈ (0, 1] can be used to control the size of the result-
ing set by defining a probability of maintenance of a given
element from (Xr1,g ⊕ Xr2,g) in Vi,g, as suggested in [7].

After mutation, the recombination step creates a subprob-
lem by the union of Vi,g with the target solution Xi,g. This
subproblem is defined as a limited subset of the original
search space that includes the target solution, and is much
smaller than the complete search domain. Problem-specific
local search methods are then used to solve this subproblem.

The proposed adaptation employs the DE structure to
define subproblems containing elements that differ across
the solutions. The most promising elements that compose
good candidate solutions will tend to remain in the popula-
tion, which will eventually converge in a manner similar to
that of the original DE [3]. The remaining aspects of the
original DE, such as selection and stopping criteria, are left
unchanged. This approach can be adapted to any combina-
torial problem, with two steps required for this adaptation:
the representation of the problem domain as a set, and the
definition of the local search movements to be used in the
solution of the subproblems.
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3. EXAMPLE OF APPLICATION
In this work we applied the proposed method to the ca-

pacitated centered clustering problem (CCCP)1, which is an
NP-hard problem [5] with a non-linear objective function.
As this problem can be seen as a bipartite graph with the
edges connecting k1 nodes to k2 clusters, candidate solutions
were represented as sets of edges (i, j), with each edge indi-
cating the allocation of node i to cluster j. The movement
used for the local search within the subproblems is node
reallocation to another cluster.

Besides the proposed method, three other approaches were
tested to provide a comparison baseline: a branch-and-bound
approach that applies a nonlinear solver to successive sub-
problems (Gurobi) [1]; a heuristic based on the iterated local
search (ILS) method [2]; and a multi-start local search from
random initial points (MultiStart). The full description of
the experimental setup can be found in [4].

The significance tests performed for comparing mean per-
formance of the algorithms on both sets of problems yielded
significant results at the 95% confidence level, suggesting dif-
ferences among the average performance of the algorithms.
The estimates of mean performance of the methods, both
overall and for each problem, are shown in Figure 1.
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Figure 1: Top: Mean performance of the algorithms
on all instances. Vertical bars represent 95% con-
fidence intervals. Bottom: Confidence intervals on
global performance of the algorithms on the SJC
and Doni instances, respectively.

1We used six problems from the SJC family (100 - 402 nodes)
and seven from the Doni family (1000 - 13221 nodes) for the
tests. For more details, see [4].

4. CONCLUSIONS
A set-based version of the DE algorithm was proposed for

the solution of combinatorial optimization problems. This
method uses the DE structure and set-based operations to
define subproblems which are then solved using local search
methods, which can operate in reduced subspaces. An exam-
ple of application using the Capacitated Centered Cluster-
ing Problem as a testbed was resented. The experimental
comparison showed that the set-based DE was able to re-
turn competitive solutions when compared to other widely
used approaches. More tests, particularly in much larger
instances, are still necessary to evaluate the applicability of
the proposed method.
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O. M. Neto. Using differential evolution for
combinatorial optimization: a general approach. In
2010 IEEE International Conference on Systems Man
and Cybernetics, pages 11–18, 2010.

[8] G. R. Raidl and B. A. Julstrom. Edge sets: An effective
evolutionary coding of spanning trees. IEEE
Transactions on Evoutionary Computation,
7(3):225–239, 2003.

[9] R. Storn. Differential evolution research - trends and
open questions. In U. K. Chakraborty, editor, Advances
in Differential Evolution, volume 143 of Studies in
Computational Intelligence, pages 1–31. Springer Berlin
Heidelberg, 2008.

[10] R. Storn and K. Price. Differential evolution - a simple
and efficient adaptive scheme for global optimization
over continuous spaces. Technical report, International
Computer Science Institute, 1995.

70




