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ABSTRACT

In the Multidimensional Knapsack Problem (MKP) there
are items easily identifiable as highly (lowly) profitable and
likely to be chosen (not chosen) to compose high-quality so-
lutions. For all the other items, the Knapsack Core (KC),
the decision is harder. By focusing the search on the KC ef-
fective algorithms have been developed. However, the true
KC is not available and most algorithms can only rely on
items’ efficiencies. Chu & Beasley Genetic Algorithm (CBGA),
for example, uses efficiencies in a repair-operator which bias
the search towards the KC. This paper shows that, as the
search progresses, efficiencies lose their descriptive power
and, consequently, CBGA’s effectiveness decreases. As a
result, CBGA rapidly finds its best solutions and stagnates.
In order to circumvent this stagnation, extra information
about the KC should be used to implement specific opera-
tors. Since there is a correlation between marginal proba-
bilities in a population and efficiencies, we show that KCs
can be estimated from the population during the search. By
solving the estimated KCs with CPLEX, improvements were
possible in many instances, evidencing CBGA’s weakness to
solve KCs and indicating a promising way to improve GAs
for the MKP through the use of KC estimates.

Categories and Subject Descriptors

G.1.6 [Optimization]: Global Optimization—Evolutionary

Combinatorial Optimization and Metaheuristics
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1. INTRODUCTION
The Multidimensional Knapsack Problem (MKP) is an

well-known NP-Hard combinatorial optimization problem,
defined as the Integer Linear Programming (ILP) model (1)-
(3) [2,3]. The objective is to choose the most profitable sub-
set of items (1), respecting m capacity constraints (2) and
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not considering fractional items (3). The MKP generalizes
the simpler knapsack problem, in which there is only m = 1
constraint.

max f(x) =

ℓ∑

j=1

pj · xj , (1)

subject to

ℓ∑

j=1

wij · xj ≤ ci, i = 1, . . . ,m, (2)

xj ∈ {0, 1}, j = 1, . . . , ℓ. (3)

By definition, there are ℓ ≥ 1 items available, with profits
pj > 0 (j = 1, . . . , ℓ), and m ≥ 1 resources available in
amounts ci > 0 (i = 1, . . . ,m). For each item chosen, pj
is incremented in the objective value (total profit) and the
quantity wij is decremented from the ith resource. Some
items are more profitable than others, some consume less
resources than others, those with a high ratio between their
profit and resource consumption (called efficiency) are likely
to be in optimal solutions. On the other hand, those items
with low efficiencies are likely to be left outside the knapsack
(xj = 0) in high-quality solutions. We may say that all the
other items compose the Knapsack Core (KC).
The Chu & Beasley Genetic Algorithm (CBGA) [1] uses

such efficiencies to guide the search [4]. However, at some
point of the evolutionary process efficiencies lose their power,
from that point, the quality of solutions will improve slowly
due to the NP-hardness of the KC (first assumption). For-
tunately, during the search the population accumulates in-
formation about the KC, and we can expect the KC being
estimated from items’ marginal probabilities – those with
0 < pXi

(x = 1) < 1 – (second assumption).
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Figure 1: Marginal probabilities in non-decreasing
order, after 100, 000 fitness evaluations.

73



Table 1: Results for instances 10.500.*
Alpha Instance FH

time(h)
CBGA
Time(h)

Stag.
Time(%)

f(x) f(x*) CBGA
Gap

|C| CPLEX
Gap

CPLEX
Time(h)

0.25 10.500-00 0.49 6.72 92.64 117790 117821 31 72 0 4
0.25 10.500-01 0.16 3.45 95.5 119208 119249 41 82 17 4
0.25 10.500-02 2.64 6.84 61.32 119194 119215 21 72 4 4
0.50 10.500-10 2.24 4.43 49.34 217365 217377 12 73 12 3.09
0.50 10.500-11 5.63 6.79 17.08 219053 219077 24 72 2 4
0.50 10.500-12 1.8 5.05 64.35 217792 217847 55 68 0 0.31
0.75 10.500-20 0 4.35 99.97 304344 304387 43 75 17 1.19
0.75 10.500-21 0.37 6.07 93.97 302370 302379 9 77 8 1.13
0.75 10.500-22 1.93 4.88 60.41 302408 302417 9 74 3 1.46
– – 2.3±1.9 5.7±1.1 62.5±28.6 – – 27.4±17.2 – 10.6±10.1 2.3±1.6

Figure 1(a) shows in red (thicker line) the efficiencies edualj

sorted in non-decreasing order and scaled between [0, 1].
The dotted line (in black), shows the marginal probabili-
ties also sorted in non-decreasing order. In blue (thin line)
we show the efficiencies ordered according two criteria: 1)
the marginal probabilities, 2) the efficiencies itself. At last,
we see in green dots that the KC is most probably composed
of items with larger standard deviation in the population.

2. EXPERIMENTS
The experiments were performed with all MKP instances

provided by Chu and Beasley [1]. For each instance the
CBGA was run once and the last population was used to
estimate the KCs. The best solution in the population was
set as initial solution and the subproblem defined by the KC
items solved using CPLEX. The solver was allowed to run
for a maximum of 4 hours in a multi-core processor1.

Table 1 shows the results for some instances with ℓ = 500
and m = 10. CBGA was only able to find the best known
solution in instance 10.500-13. After applying CPLEX to
the KC (of sizes |C|) most of the gaps (CPLEX Gap) were
decreased, as shown in bold, and the best known solution
was found for more instances. However, the stagnation time
(62% in average) represents most of CBGA’s running time.

These results agree with all of our previous hypothesis.
It shows that the original CBGA cannot keep its effective-
ness in long-runs, due to the decrease of the information
provided by items’ efficiencies along the generations. This
fact is shown by high stagnation times, from which we can
conclude that CBGA will spend most of its time without
improvements in a long-run. On the other hand, we also
showed that information about the KC can be extracted
from statistics measured from CBGA’s population. The im-
provements obtained by CPLEX when solving the subprob-
lems defined by the estimated KCs proves the validity of
such approach.

3. CONCLUSIONS
This study analyzed the effectiveness of CBGA in solving

MKPs. CBGA was one of the first successful Genetic Algo-

rithms (GAs) for the MKP and various new methods were
developed based in its basic principles. In general, CBGA
is a simple steady-state GA, however, it originally proposed
the use of items’ efficiencies to implement a repair-operator
that was able to rapidly bias the search towards high-quality
solutions.

1
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We showed that by using efficiencies CBGA can only be
effective by a certain amount of time. After some genera-
tions, when most of highly/lowly efficient items have already
converged, the search stagnates. This occurs because the
remaining items’ efficiencies are too much similar and the
repair-operator is not able to bias the search anymore. As a
consequence of this fact, even after a very long-run CBGA
is not able to find the best known solution for harder in-
stances. In fact, we showed that the best solution found in
a long-run appears in the beginning of the search, followed
by very long stagnation times after that.

Another important characteristic in solving MKPs is the
GA’s ability to converge non-KC decision variables very fast,
in order to focus the search in the harder subproblem defined
by the KC. We showed that the CBGA is not able perform
this task, after its stagnation the algorithm also stops the
convergence of non-KC variables, beginning a drift-like be-
havior. Therefore, when considering larger population sizes,
a smaller subsets of variables converge presenting some dif-
ficulties in focusing the appropriate regions.

Although we used a two-step procedure, running the CBGA
first then extracting information from the population. We
believe that in a general context, the analysis provided in
this study can help to understand and develop more effec-
tive GAs for the MKP.
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[2] A. Fréville. The multidimensional 0–1 knapsack
problem: An overview. European Journal of

Operational Research, 155(1):1–21, 2004.

[3] J. Puchinger, G. R. Raidl, and U. Pferschy. The
multidimensional knapsack problem: Structure and
algorithms. INFORMS Journal on Computing,
22(2):250–265, 2010.

[4] J. Tavares, F. Pereira, and E. Costa. Multidimensional
Knapsack Problem: A Fitness Landscape Analysis.
Systems, Man, and Cybernetics, Part B: Cybernetics,

IEEE Transactions on, 38(3):604–616, june 2008.

74




