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ABSTRACT
A framework for community discovery in multidimensional
networks based on an evolutionary approach is proposed.
Each network is clustered by running a multiobjective ge-
netic algorithm that tries to maximize the modularity func-
tion of the current network and, at the same time, to mini-
mize the difference between the current community structure
and that obtained on the already considered dimensions.
Experiments on synthetic datasets show the capability of
the approach in discovering latent shared group organiza-
tion of individuals.

Categories and Subject Descriptors
H.2.8 [Database Managment]: Database Applications —
Data Mining ; I.5.3 [Computing Methodologies]: Pattern
Recognition—Clustering

General Terms
Algorithms

Keywords
Multi-dimensional Networks; Community detection; Multi-
objective Genetic Algorithms

1. INTRODUCTION
In the last years, the rapid growth of social network-

ing sites has provided people a media to communicate and
exchange information. Each individual user often partic-
ipates in different social networks with different strength,
thus playing diverse roles. This implies that many real-world
networks are multidimensional since actors are connected by
different relationships. In the last years there has been an
increasing interest in complex networks presenting multiple
connections between pairs of individuals.

A multidimensional network can be viewed as a set of
slice networks. Each slice, modeled as a graph, represents a
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facet of the individual activity, i.e. the connections among
individuals in a particular dimension. Generally, the inter-
actions of the same user may be rather different, since a user
may be involved in distinct activities with variable concern.
The objective in a multidimensional network is to uncover
a shared community structure among objects such that a
quality function is optimized in all the dimensions.

In this paper a new framework based on multiobjective
optimization to deal with the problem of detecting a shared
community structure in multidimensional networks is pro-
posed. The competing objectives to optimize try to obtain
a community structure for the i-th dimension as accurate
as possible, and, at the same time, that does not differ too
much from the clustering obtained so far on the i-1 already
considered dimensions. Experiments on synthetic networks
show that the multiobjective approach allows the detection
of accurate community structures in multidimensional net-
works.

2. METHOD DESCRIPTION
A multidimensional network is a sequence N = {N1, . . . ,Nd}
of slice networks, where each Nl is a dimension and it is mod-
eled as a graph Gl = (Vl, El), being Vl ⊆ V the set of nodes,
and El the set of links connecting elements of Vl in the l-
th dimension of N . A clustering, or community structure,
CSl = {Cl

1, . . . C
l
k} of a network Nl is a partitioning of Gl in

groups of nodes that maximizes a quality function Q. Fur-
thermore, for each couple of communities Cl

i and Cl
j ∈ CSl,

Vli ∩ Vlj = ∅. Our objective is to uncover a shared commu-
nity structure CS among the objects of the multidimensional
network N such that the quality function Q is optimized in
all the d dimensions.

The problem of finding a shared community structure in
a multidimensional network can be viewed as the analogous
problem in a dynamic network, i.e. a network that evolves
by changing its interconnections over time, where each di-
mension of the multidimensional network corresponds to a
time stamp in the dynamic network. In particular, the evo-
lutionary clustering approach proposed by Chakrabarti et
al. [1] and exploited in [2] for dynamic networks, can be
extended to multidimensional networks by considering the
concepts of facet quality FQ and sharing cost SC as the
analogous of snapshot quality and temporal smoothness of
evolutionary clustering. Facet quality guarantees that the
clustering found for the i-th dimension under consideration
maximizes a quality function as much as possible, while the
sharing cost means that the clustering of the current facet
agrees as much as possible with the clustering obtained for
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the previously considered i-1 dimensions. In this new frame-
work, given the sequence A1, . . . , Ad of adjacency matrices
associated with the graphs {G1, . . . , Gd} modeling a multidi-
mensional network N = {N1, . . . ,Nd}, a shared community
structure among the networks Ni can then be obtained by
iteratively optimizing both facet quality and sharing cost.
The community structure obtained for the last dimension d
thus can be considered the best sharing community struc-
ture among the d dimensions. A method to carry out this
framework is to use a multiobjective genetic algorithm that
finds a solution realizing the best trade-off between facet
quality of network Ni and sharing cost with Ni−1. As facet
quality FQ we employ the well known concept of modular-
ity introduced by Girvan and Newman [3], while the second
objective is the Normalized Mutual Information, that gives
the similarity between the community structure of the cur-
rent facet and the clustering obtained so far for the facets
already considered.

The multiobjective method consists of two main steps.
In the former the network N1 is clustered by employing a
genetic algorithm that optimizes the modularity value. In
the second one, a multiobjective genetic algorithm, for each
pair of dimensions Ni and Ni−1, tries to optimize the facet
quality FQ for the graph Gi modeling the current dimension
Ni, and the sharing cost SC computed as the normalized
mutual information between the clustering obtained for Gi

and that for Gi−i.
Both steps use the locus-based adjacency representation

and uniform crossover. Moreover, the initialization process
assigns to each node i one of its neighbors j, and the muta-
tion operator randomly assigns to a node i one of its neigh-
bors. The multiobjective genetic algorithm is iteratively ex-
ecuted for the d-1 dimensions by optimizing the two objec-
tives FQ and SC. For each iteration, the clustering having
the best modularity value is chosen from the Pareto front as
current solution. It is worth to note that the network order-
ing could influence the performances of the method because
slices are considered sequentially, thus processing first one
network instead of another could produce different results.
Choosing the best ordering is not an easy task and deserves
a deep investigation which is beyond the scope of this paper.
Instead of choosing a random order, we employed a heuristic
based on the the concept of clustering coefficient of a net-
work. In the next section we show that the combination of
multiobjective optimization and clustering coefficient based
ordering gives good performance results, also compared with
the Tang et al. methods [4] on synthetic networks.

3. EXPERIMENTAL RESULTS
In this section we present the results obtained by the

method on synthetic data sets for which the ground-truth
division in communities is known, and compare the method
with the spectral-based approaches proposed by Tang et al.
[4], besides the result obtained by a genetic algorithm op-
timizing modularity on a single dimension. The data set,
proposed by Tang et al. [4], consists of 350 objects grouped
into three clusters of 50, 100, and 200 objects, respectively.
The number of dimensions is 4, i.e. the objects can interact
in 4 different ways. An example can be seen in Figure 1.
We executed the method on 50 different generated synthetic
networks and computed the normalized mutual information
NMI between the obtained clustering and the true commu-
nity structure. As regards the parameters, we set population

size 350, number of generations 200, crossover fraction 0.9,
mutation rate 0.2. The implementation has been written in
MATLAB 7.14 R2012a, using the Genetic Algorithms and
Direct Search Toolbox 2.
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Figure 1: Example of 4-D synthetic network.

Strategy Evolutionary Spectral
A1 0.7241 ± 0.2140 0.7237 ± 0.1924
A2 0.8530 ± 0.0768 0.6798± 0.1888

1-D A3 0.7918 ± 0.1427 0.6672 ± 0.1848
A4 0.8176 ± 0.0844 0.6906± 0.1976

MultiMOGA 0.9368 ± 0.0118 -
4-D PMM - 0.9351 ± 0.1059

AMM - 0.7946 ± 0.1623
TMM - 0.9157 ± 0.1137

Table 1: Comparing the NMI values between the
evolutionary computation approaches and spectral
approaches of Tang et al. [4].

From Table 1 we can observe that the results obtained
by MultiMOGA are superior with respect to the AMM and
TMM methods. Regarding PMM , the NMI values of Mul-
tiMOGA are slightly higher, and our approach is more ro-
bust that PMM having a much lower standard deviation.
On the single dimensional methods, the genetic approach al-
ways outperforms the spectral approach. It worth to point
out that the spectral approaches need as input parameter
the number of communities to find, while the GAs methods
automatically determine this value because of the genetic
representation that encodes the optimal division of objects
with respect to the objective function to maximize.
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