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ABSTRACT
Dimensionality reduction is an important problem class in
machine learning and data mining, as the dimensionality of
data sets is steadily increasing. This work is a contribution
in the line of research on iterative unsupervised kernel re-
gression (UKR), a class of methods for dimensionality reduc-
tion that employ regression methods to find low-dimensional
representations of high-dimensional patterns. We introduce
a hybrid optimization approach of iteratively constructing a
solution and performing gradient descent in the data space
reconstruction error (DSRE). Further, we introduce a vari-
able kernel function that increases the flexibility of UKR
learning. The variable kernel function increases the model
capacity, but introduces new parameters that have to be
tuned.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models
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1. HYBRID UNSUPERVISED REGRESSION
The problem of dimensionality reduction is to find low-

dimensional representations xi ∈ Rq of high-dimensional
patterns yi ∈ Rd for i = 1, . . . , N . The method, we focus
on in this paper is UKR, where a regression model f is used
to map from the low-dimensional space to the given high-
dimensional patterns. In the optimal case, for every pat-
tern it should hold f(xi) = yi, which means that the high-
dimensional patterns are perfectly reconstructed with the
low-dimensional representation and regression model f(·).
With real-world data sets this relation is difficult to achieve.
The difference between f(xi) and yi can be defined as r(xi) =
‖yi − f(xi)‖22, which is the DSRE. For a matrix X = [xi]

N
i=1

of patterns xi with i = 1, . . . , N the DSRE of a the whole
manifold is R(X) = 1

N

∑N
i=1 r(xi).
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As regression model f , we use the Nadaraya-Watson esti-
mator [4]

f(X) =

N∑
i=1

yi ·
Kh(x− xi)∑N
j=1 Kh(x− xj)

(1)

with kernel function Kh that usually has a kernel parame-
ter h, e.g., the bandwidth of the kernel. In Nadaraya-Watson
estimation, x itself affects the result of the model. Hence,
leave-one-out crossvalidation is employed for the DSRE com-
putation to avoid overfitting. Used kernel functions in this
work are the Epanechnikov kernel, which has an optimal
mean integrated squared error and the quartic kernel, which
is differentiable.

The idea of the hybrid optimization approach is to com-
bine gradient descent optimization for UKR introduced by
Klanke and Ritter [2] and iterative solution construction for
UNN presented by Kramer [3] to a hybrid iterative dimen-
sionality reduction method (hybUKR). To tune the band-
width of used kernel function, we use an evolution strat-
egy (ES) [1] for the iterative method. The (µ + λ)-ES per-
forms the iterative method multiple times. In the itera-
tive embedding step, patterns are successively embedded,
i.e., for pattern yi latent candidate positions are generated
with Gaussian sampling. The first pattern y1 is embed-
ded at an arbitrary position, e.g. at X = [0] and Y =
[y1]. Let Y be the matrix of embedded patterns in iter-
ation i and let X be the corresponding latent positions.
For each pattern yi with i > 1, κ latent candidate posi-
tions are sampled in latent space with Gaussian sampling
xi ∼ N

(
xj , ‖yi − yj‖22

)
with xj = [X]j ,yj = [Y]j and

j = arg min
yj=[Y]j

‖yi − yj‖22 . (2)

The candidate position that minimizes the DSRE is finally
chosen for the new manifold X. Alternatively, the position
can be evolved with a (1+λ)-ES. After η patterns have been
embedded, gradient descent in the space of latent variables
w. r. t. the DSRE is performed:

Xmod = X− α · ∇L(f(X),Y) (3)

The optimized latent space is Xmod. Stepwidth α is an im-
portant parameter and is optimized with an ES in this work.
Gradient descent is repeated until no improvement of the
DSRE is achieved. In the iterative scheme, special cases are
η = 1, i.e., gradient descent is performed after each single
embedding, or η = N , i.e., gradient descent is only called
once after all patterns have been embedded. In the case
η = N , we observed improvements in comparison to initial-

77



ization with other methods, as the gradient descent process
uses the same regression method as the iterative process for
creating the low-dimensional space. And it turns out that
the learning embeddings are better w. r. t. the DSRE, if the
gradient descent process is performed multiple times during
the iterative process, i.e., for η < N/2.

2. VARIABLE KERNEL FUNCTION
To increase flexibility of our approach, we introduce a vari-

able kernel function in this section. Not only the kernels
bandwidth parameter is optimized, but also further param-
eters that determine the characteristics of the variable kernel
function.

To combine multiple kernel functions, the following two
conditions must hold at the transition of function K1 to
function K2 at position x:

K1(x)
!
= K2(x) and K′

1(x)
!
= K′

2(x) (4)

In general, a kernel function has three interesting proper-
ties: (1) a maximum that yields K(·) = β in case of maxi-
mal similarity of two patterns, (2) a decreasing part starting
at a defined boundary value (bv) with a defined curvature
(e.g. varying slope) for patterns with decreasing similarity,
and (3) a tail that determines the weak influence of dissim-
ilar patterns. This leads to the following function definition

for our variable kernel function K̂ that allows to parame-
terize properties (1) and (2), while condition (3) equals the
properties of the Epanechikov kernel:

K̂ = β ·



1 if |x| ≤ ξ0
−(x− xbv)2 + 1 if |x| > ξ0 and |x| ≤ ξ1
−m · (x− xbv) + m2

4
+ 1 if |x| > ξ1 and |x| ≤ ξ2

(x− ( 1
m

+ m
2

+ xbv))
2 if |x| > ξ2 and |x| ≤ ξ3

0 if |x| > ξ3
(5)

and

∂K̂

∂x
= β ·



0 if |x| ≤ ξ0
−2 · (x− xbv) if |x| > ξ0 and |x| ≤ ξ1
−m if |x| > ξ1 and |x| ≤ ξ2
2 · (x− ( 1

m
+ m

2
+ xbv)) if |x| > ξ2 and |x| ≤ ξ3

0 if |x| > ξ3
(6)

with ξ0 = xbv, ξ1 = m
2

+ xbv, ξ2 = 1
m

+ xbv, and ξ3 = 1
m

+
m
2

+ xbv. For gradient m of the function, it must hold 0 <

m ≤
√

2, and xbv ≥ 0 to assure the necessary conditions. To
ensure that the area under K̂ is one, we derived the following
condition:

β =
2 ·m

4 ·m · xbv +m2 + 2
(7)

This function definition allows shapes with flexible curva-
ture. Figure 1 shows two examples, K̂1, a shape with sharp
top with settings, and K̂2, a shape with large plateau.

The variable kernel function is employed in the hybUKR
embedding process in the following experiments. The ES
of hybUKR optimizes the kernel parameters h, xbv, and
m. The parameters are initialized as follows: xbv = 0.2
and m = 0.7. We use the Digits data set with ′1′ and ′3′,
N = 100 and a q = 2-dimensional latent space. The opti-
mization is based on a (2 + 7)-ES for hybUKR. This turned
out to be a good choice in previous experiments. Each ex-
periment is repeated 25 times. We employ Rechenberg’s
success rule to control mutation strengths. Table 1 shows
the outcome of the experiments. We can observe that the
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(b) K̂2 with plateau

Figure 1: Visualization of two variable kernel func-
tion parameterizations: (1) K̂1 with xbv = 0.0 and

m = 0.5, (2) K̂2 with xbv = 0.7 and m = 1.4.

kernel gradient descent DSRE

no 1706± 22
quartic at n = 100 1540± 16

at n = 25, 50, 75, 100 1518± 12
no 1712± 26

K̂ at n = 100 1535± 16
at n = 25, 50, 75, 100 1515± 15

Table 1: Comparison of quartic kernel and variable
kernel K̂ in the hybUKR embedding process w. r. t.
DSRE.

gradient descent process improves the experimental results
and reduces the standard deviations. The results also show
that an alternating scheme is advantageous to reduce the
DSRE. The novel variable kernel K̂ achieves similar results
as the quartic kernel, only a slight, not significant improve-
ment can be observed when combined with gradient descent.

3. SUMMARY AND CONCLUSIONS
In this work, we employed a hybrid optimization approach

that combines iterative embeddings with gradient descent.
For this sake, we had to employ differentiable Nadaraya-
Watson estimator with differentiable kernel functions. To
increase the flexibility of adapting latent variables in the
low-dimensional space, a variable kernel function has been
introduced. It motivates the employment of evolutionary
search to adapt to certain data space characteristics. Al-
though the superiority of the increased model capacity of
the variable kernel function was only marginal on the Digits
data set, we expect improvements on other more complex
data spaces with potentially varying local data space char-
acteristics.
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