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ABSTRACT
In this paper, we propose an Indicator-based Chemical Re-
action Optimization (ICRO) algorithm for multiobjective
optimization. There are two main motivations behind this
work. On the one hand, CRO is a new recently proposed
metaheuristic which demonstrated very good performance
in solving several mono-objective problems. On the other
hand, the idea of performing selection in Multi-Objective
Evolutionary Algorithms (MOEAs) based on the optimiza-
tion of a quality metric has shown a big promise in tackling
Multi-Objective Problems (MOPs). The statistical analysis
of the obtained results shows that ICRO provides competi-
tive and better results than several other MOEAs.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Articial Intelligence—
Problem Solving, Control Method, and Search.

General Terms
Algorithms, Design.

Keywords
Multi-objective optimization, chemical reaction optimiza-
tion, indicator-based selection

1. INTRODUCTION
Most real world optimization problems encountered in

practice have a multi-objective nature. In fact, Evolution-
ary Multi-objective Optimization (EMO) is new branch in
the optimization research field and it represents actually one
of the most attractive and active research fields in computer
science. One of the emerging fitness assignment schemes
proposed in the EMO literature is the indicator-based schem-
es which is based on the use of performance indicators. Fur-
thermore, a new CRO metaheuristic was proposed recently
by Lam and Li [1] in 2010. The CRO algorithm has demon-
strated its effectiveness and efficiency in solving different
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single-objective real world and benchmark problems [1]. It
has several nice features rendering it one of the most effi-
cient metaheuristics for mono-objective optimization. Till
now, the CRO has not been investigated in indicator-based
multi-objective optimization. For this reason, we seek in
this paper to exploit the nice CRO characteristics in solving
MOPs and to propose then a new multi-objective general
based indicator CRO (ICRO).

2. INDICATOR-BASED CHEMICAL REAC-
TION OPTIMIZATION

2.1 Basic scheme
This section gives the main algorithmic scheme of ICRO.

The first step of the algorithm consists on applying the
CRO variation operators in order to generate the offspring
population Qt. We should mention here that differently to
other metaheuristics, CRO performs environmental selection
within the variation operators [1]. As well, each CRO op-
erator defines its replacement strategy based on PE value.
For this reason, we seek firstly to relax the CRO verifica-
tion in the variation step. So, thus we generate the offspring
population Qt and after that we can turn back to apply
the PE energy management laws of CRO. It looks like we
control moves in the search space in order to avoid visiting
non-promising regions thanks to these energy management
rules. The PE value corresponds here to the usefulness of
such solution according to Qt. As a result, the second step
of the algorithm consists on computing this value based on
the used quality indicator (cf. section 2.2). Now, we are
ready to apply the CRO energy management laws to obtain
the updated offspring population Q′t. After this stage, we
can form the combined population Rt = Pt ∪Q′t. The pop-
ulation size of Rt is larger than the predefined population
size N , since both parent and offspring population members
are included in Rt. As a consequence, elitism is ensured.
After this step, environmental selection is implemented. We
iteratively remove from Rt the worst population members
and therefore updating the fitness values of the remaining
ones.

2.2 Fitness assignment
The usefulness of an individual regarding to a whole pop-

ulation P and a binary indicator I was suggested by many
authors in the last decade. The ICRO is focused upon bi-
nary indicator-used fitness assignement in which we use the
following recent and popular addidative ε−indicator-based
selection method proposed by Ziztler and Kunzli [2].
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Table 1: GD and HV median values of ICRO, SMS-EMOA, IBEA and MOEA/D. The Wilcoxon test is performed

so that the ith ”+” means different with the ith algorithm, and ”-” means the opposite.

ICRO SMS-EMOA IBEA MOEA /D

GD HV GD HV GD HV GD HV

DTLZ1 7,27E-4(+++) 7,49E-4(+++) 3,55E-4(+++) 8,16E-1(+++) 3,57E-3(+++) 3,10E-1(+++) 4,02E-4(+++) 7,77E-1(+++)

DTLZ2 4,40E-4(-++) 4,68E-1(-++) 4,47E-4(-++) 4,65E-1(-++) 1,22E-3(+++) 4,28E-1(+++) 4,96E-4(+++) 4,09E-1(+++)

DTLZ3 1,34E-3(+++) 2,42E-1(+++) 7,77E-1(+++) 1,20E-3(+- -) 8,87E-3(++-) 1,8E-4(+- -) 1,72E-2(++-) 7,08E-1(+- -)

DTLZ4 4,28E-3(-++) 4,32E-1(+++) 3,94E-3(-++) 3,44E-3(+++) 1,01E-3(++-) 4,21E-1(+++) 1,55E-3(++-) 3,17E-1(+++)

DTLZ5 2,66E-4(+++) 9,46E-2(-++) 1,83E-4(+++) 9,35E-2(- - -) 8,66E-5(+++) 9,42E-2(+-+) 1,71E-5(+++) 9,47E-2(+-+)

DTLZ6 2,65E-4(+++) 9,25E-2(+++) 3,43E-2(+++) 8,32E-3(+-+) 3,35E-4(+++) 9,23E-2(+-+) 3,81E-5(+++) 9,53E-2(+++)

DTLZ7 7,55E-4(+++) 3,07E-1(-++) 7,89E-4(+++) 2,95E-1(-++) 1,85E-2(+++) 2,41E-1(++-) 3,72E-3(+++) 2,27E-1(++-)

SDTLZ1 6,30E-4(+++) 6,69E-1(+++) 3,90E-4(+++) 8,16E-1(+++) 3,41E-3(++-) 3,53E-1(+++) 2,48E-3(++-) 5,46E-1(+++)

SDTLZ2 4,57E-4(+++) 4,48E-1(- -+) 4,69E-4(+++) 4,46E-1(-++) 1,22E-3(+++) 4,28E-1(-++) 2,79E-3(+++) 2,65E-1(+++)

WFG5 1,25E-3(-++) 4,11E-1(+++) 1,66E-3(-++) 4,07E-1(+++) 1,26E-3(+++) 3,91E-1(+++) 7,04E-4(+++) 3,58E-1(+++)

Iε(x1, x2) = maxi∈{1,...,n}(fi(x1)− fi(x2)) (1)

where x1 ∈ X, x2 ∈ X and then Iε(x1, x2) expresses the min-
imal translation in the objective pace on which to execute x1
thus it dominates x2. So thus, PE (x1) =

∑
x2∈p

−e−Iε(x1,x2).

Note that the translation may take negative values which
means that x1 dominates x2. ICRO scheme can apply other
indicators to adapt the search according arbitrary perfor-
mance measure and the diversity of the population should
be improved by the used binary indicator defined by DM.

3. RESULTS AND DISCUSSION
Our experiments are divided into two parts. The first one

is devoted to compare ICRO against three well-cited MOEAs
which are: (1) MOEA/D, (2) SMS-EMOA, and (3) IBEA.
The second one is dedicated to CPU time analysis in order to
assess the efficiency of our ICRO from a computational time
viewpoint. The ICRO algorithm was tested on well-known
benchmark problems: the first seven test problems of DTLZ
suite [3] in addition to the WFG5 test problems [4]. More-
over we use two variants of DTLZ1 and DTLZ2 called Scaled
DTLZ1 (SDTLZ1) and Scaled-DTLZ2 (SDTLZ2). The gen-
erated results of the different EMOA are evaluated using two
performance metrics: (1) Generational Distance (GD), and
(2) HyperVolume (HV) indicators [4]. As well, the perfor-
mance comparison was carried out using the Wilcoxon sta-
tistical test. Therefore, thirty one runs for the bi-objective
case and eleven runs for the tri-objective one are performed.

We present only the comparative results for the tri-objecti
ve in Table 1 due to limitation space where the best value for
each problem is highlighted in bold. For GD results, ICRO
gives good results on DTLZ2, DTLZ3, DTLZ7, SDTLZ2
and WFG5. This result could be explained by the fact that
ICRO operators perform explicitly local search techniques,
which allows it to give a good convergence rate in the ma-
jority test problems. However, for some other test prob-
lems e.g. DTLZ4, no comparaison results can be deduced
between ICRO and SMS-EMOA. For the HV comparative
results we show that ICRO presents a good results on sev-
eral test problems e.g., DTLZ2, DTLZ3, DTLZ4, DTLZ7,
SDTLZ2 and WFG5. However it performs poorer than
MOEA/D on DTLZ6 which is characterized by a curve front.
Indeed, ICRO generates a challenging results regarding to
SMS-EMOA and IBEA on DTLZ3 which is a difficult task

problem involving multiple local fronts. For the CPU time
analysis, we observe from Table 2 that ICRO represents a
CPU times less than SMS-EMOA and IBEA. While, com-
pared to MOEA/D, it takes more CPU times. MOEA/D is
a decomposition based algorithm so it requires lower compu-
tational complexity.We should mention here that based on
Wilcoxon test, all results are statistically different from each
others. In summary, the CPU times analysis shows clearly
that ICRO outperforms SMS-EMOA and IBEA which can
make it an efficient Indicator based-MOEA.

Table 2: CPU time results of the four algorithms on DTLZ2

and WFG5 for the bi-objective case and the tri-objective one.

Bi-objective case Tri-objective case

DTLZ2 WFG5 DTLZ2 WFG5

ICRO 1,49s 1,64s 9,39s 10,52s

IBEA 3,02s 3,02s 19,15s 20,99s

SMS-EMOA 67,61s 125,96s 22879,90s 23981,13s

MOEA/D 0,12s 0,12s 0,36s 0,36s

4. CONCLUSIONS
In this paper, we have suggested an Indicator-based CRO

which has shwon its performance for the tri-objective case
in terms of finding a well-converged and well-distributed ap-
proximation of the Pareto front in a reasonable time. There-
fore, it is interesting to design a many-objective version of
ICRO and to investigate it to tackle real-world problems.
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