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ABSTRACT
A non-dominated sorting differential evolution algorithm with
improved directional convergence and spread (NSDE-IDCS)
is developed. Taking advantage of differential evolution,
searching direction for a dominated solution is determined
by its nearest non-dominated neighbor, while searching di-
rection for a non-dominated solution is determined by other
two non-dominated solutions. A simplex local search opera-
tor with an adaptive search probability is embedded to fur-
ther exploit the neighborhood of non-dominated solutions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

Keywords
multiobjective optimization, differential evolution, directional
information, simplex local search

1. INTRODUCTION
Differential evolution (DE) is extensively used in multi-

objective evolutionary algorithm (MOEA) as a population
based global optimization algorithm [3]. To the best of the
authors’ knowledge, most of existing DE based MOEAs on-
ly employ the classical DE as a search operator. However,
little improvement in the searching direction has been made
to DE with respect to the characteristic of multiobjective
optimization problems (MOPs). In [1], the non-dominated
sorting differential evolution - directional convergence and
spread (NSDE-DCS) is proposed, in which the directional
information is embedded into DE to speed up the searching
process and to improve the searching spread. In this paper,
we study on constructing more efficient convergence direc-
tion and spread direction for DE by using the directional
information contained in non-dominated solutions. The pro-
posed MOEA is named as non-dominated sorting differen-
tial evolution - improved directional convergence and spread
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(NSDE-IDCS). Inspired by [2], simplex search is employed
as a local search operator to refine non-dominated solutions
in NSDE-IDCS.

2. ALGORITHM

2.1 DE with Improved Directional Information
First we introduce NSDE-DCS briefly. NSDE-DCS [1] is

illustrated in Figure 1(a) and Figure 1(c). NSDE-DCS re-
places the crossover and mutation operation in non-dominated
sorting genetic algorithm-II (NSGA-II) with a DE operator
incorporating directional information. The DE operator is
ui = xi+K(xr3 −xi)+F (xr1 −xr2) for dominated solutions
and ui = xi + F (xr1 − xr2) for non-dominated solutions,
where xi is the ith solution in the current generation, ui is
the offspring of xi, solution xr3 has a lower Pareto rank than
xi, solutions xr1 and xr2 have a same rank, K and F are
control parameters. xr3 − xi and xr1 − xr2 are convergence
direction and spread direction, respectively. Next we discuss
how to construct a more efficient direction.

For dominated solutions, it is more important to converge
to the Pareto-optimal set. So in the NSDE-IDCS, the spread
direction for a dominated solution is omitted. On the other
hand, in NSDE-IDCS, a dominated solution takes the n-
earest non-dominated solution that dominates itself to con-
struct a searching direction, as illustrated in Figure 1(b),
where ui = xi +K(xr3 −xi). The searching step is relative-
ly larger when using the nearest non-dominated solution. It
implies that NSDE-IDCS has a faster convergence speed.

For non-dominated solutions, it is more important to dis-
tribute uniformly and to exploit new Pareto-optimal solutions.
However, xr1 and xr2 in NSDE-DCS might be dominated
solutions and mislead ui to a dominated region, as illustrated
in Figure 1(c). So in NSDE-IDCS, two other non-dominated
solutions are selected to construct a searching direction.
Searching along this direction may be of higher probability
to generate a new solution toward the edge of Pareto-optimal
set or to make the population more uniformly distributed,
as shown in Figure 1(d), where ui = xi + F (xr1 − xr2).

2.2 Simplex Local Search Operator
For a dominated solution in NSDE-IDCS, evolving toward

its nearest non-dominated solution is enough to improve con-
vergence. Hence, the simplex local search operator is only
performed to refine non-dominated solutions. A schematic of
the simplex local search is illustrated in Figure 2(a), where
x1, x2 and x3 are three nearby non-dominated solutions.
Let x4 = (x1 +x2)/2, then d = x4 −x3 might be a potential
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Figure 1: Evolution mechanism (in objective space)

searching direction for x3. Let x5 = x3+2d, x6 = x3+0.5d,
x7 = x3 − d, x8 = x3 − 2d, x9 = x3 − 0.5d. Then the
flowchart of the simplex local search for x3 is illustrated
in Figure 2(b).An adaptive search probability for the local
search is designed as pSLS = (n/N) · (t/T ), where pSLS is
the probability to decide whether to perform the simplex
local search, n and N are the number of non-dominated
solutions and the population size, respectively, and t and T
are the current generation and the total generations, respec-
tively. The probability pSLS increases as n or t increases. In
this way, the simplex local search can exploit non-dominated
solutions with a high efficiency while avoiding prematurity.

3. NUMERICAL EXPERIMENT
Four rotated MOPs [1] are used in the experiment. NSGA-

II and NSDE-DCS are introduced as comparative algorithms.
Parameter settings of NSGA-II and NSDE-DCS can be found
in [1]. For NSDE-IDCS, the control parameters are F = 0.8
and K = 0.4, which is the same as NSDE-DCS.

Figure 3 (a)-(d) show the convergence performance, where
a smaller GD(Q,P ∗) indicates a better convergence [1]. It
can be seen that NSDE-IDCS has a significantly faster con-
vergence speed, which is a consequence of dominated solutions’
evolving toward the nearest non-dominated solution. The
spread performance is shown in Figure 3 (e)-(h), where a
smaller GD(P ∗, Q) indicates a better spread [1]. Figure 3
(e)-(h) show that NSDE-IDCS can maintain enough diversi-
ty during searching, as a result of non-dominated solutions’
evolving along the Pareto front.

4. DISCUSSION AND CONCLUSION
In single-objective optimization problems, algorithms must

restrict their preference for the current best solution to avoid
prematurity and to guarantee global exploration ability. In
NSDE-IDCS, current best solutions, namely non-dominated
solutions, are used to generate searching direction. However,
the algorithm is not trapped into local solutions. The inner
mechanism is that the best solution in MOP, is not a sin-
gle solution, but a non-dominated solution set composed of
several solutions. Since the population is initialized random-
ly, the non-dominated solution set has a relatively uniform
distribution and a good diversity. Besides, as the evolution
proceeds, the number of non-dominated solutions increases,
and the diversity is improved continuously. This mechanism
guarantees that NSDE-IDCS will not be trapped into lo-
cal optima. Experiment results verify that NSDE-IDCS can

converge fast while maintaining a good spread performance.
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Figure 2: Simplex local search
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(d) Average convergence on R4
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(a) Average convergence on R1
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(f) Average spread on R2
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(g) Average spread on R3
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(h) Average spread on R4
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Figure 3: Convergence and spread over 50 runs
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