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ABSTRACT 
Hypervolume has been frequently used as an indicator to evaluate 
a solution set in indicator-based evolutionary algorithms (IBEAs). 
One important issue in such an IBEA is the choice of a reference 
point. A different solution set is often obtained from a different 
reference point since the hypervolume calculation depends on the 
location of the reference point. In this paper, we propose an idea 
of utilizing this dependency to formulate a meta-level multi-
objective set optimization problem. Hypervolume maximization 
for a different reference point is used as a different objective. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization, hypervolume, solution 
set optimization, indicator-based evolutionary algorithms. 

1. INTRODUCTION 
Evolutionary multi-objective optimization (EMO) has been a very 
active research area in the last decade. Pareto dominance-based 
EMO algorithms such as NSGA-II [4] and SPEA [8] have been 
almost always the mainstream in the EMO community. Recently, 
indicator-based evolutionary algorithms (IBEAs) such as SMS-
EMOA [3] and HypE [2] have attracted increasing attention. The 
main characteristic feature of IBEAs is the handling of multi-
objective optimization as single-objective set optimization where 
an indicator is used to evaluate a solution set. Hypervolume has 
been frequently used in IBEAs for solution set evaluation [2], [3]. 
In this case, a multi-objective optimization problem is handled as 
a hypervolume maximization problem.  

One issue to be addressed in the use of a hypervolume indicator is 
the dependency of the hypervolume calculation on the choice of a 
reference point [1]. A different solution set is obtained from a 
different reference point through hypervolume maximization. In 
this paper, we propose an idea of utilizing this dependency to 
formulate a meta-level multi-objective set optimization problem. 
An original multi-objective problem to be solved is reformulated 
as a multi-objective set optimization problem. Each objective is 
the hypervolume maximization for a different reference point. 
Thus the number of objectives is the same as the number of 
different reference points for hypervolume maximization.  

2. SINGLE-OBJECTIVE FORMULATION 
Let us consider the following k-objective maximization problem:  

Maximize ))(...,),(),(()( 21 xxxxf kfff ,       (1) 

subject to Xx .          (2) 

We denote a solution set by S, which is an arbitrary subset of X in 
(2). The solution set S is evaluated by an indicator I (S). In this 
paper, we use hypervolume as I (S). The maximization of I (S) by 
an indicator-based EMO algorithm with a constraint condition on 
the size of S can be formulated as follows [1], [5], [6]: 

[Single-Objective Hypervolume Maximization] 

Maximize )(SI ,          (3) 

subject to XS  and NS || ,        (4) 

where || S  is the number of solutions in S (i.e., the cardinality of 
the solution set S), and N is its upper bound. The inequality 
condition in (4) can be replaced with NS || . 

In [5], [6], this formulation was generalized as follows:  

[Hypervolume Maximization and Cardinality Minimization] 

Maximize )(SI   and  minimize || S ,        (5) 

subject to XS .          (6) 

3. MULTI-OBJECTIVE FORMULATION 
Let us assume that we have M reference points Rp , p = 1, 2, ..., M. 
Our problem is hypervolume maximization for those reference 
points. Let us denote the hypervolume I (S) for the p-th reference 
point Rp by I (S, Rp). This is the hypervolume of the solution set S 
calculated for the reference point Rp. In this case, the single-
objective hypervolume maximization problem in (3)-(4) can be 
generalized to the following M-objective problem: 
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[Multi-Objective Hypervolume Maximization] 

Maximize  I (S, R1), I (S, R2), ..., I (S, RM),       (7) 

subject to XS  and NS || .        (8) 

4. COMPUTATIONAL EXPERIMENTS 
Due to page limitation, we report experimental results without 
explaining their settings in detail. As a test problem, we used a 
three-objective 500-item knapsack problem (3-500 problem). First, 
we tried to search for a large number of Pareto optimal solutions 
by applying MOEA/D [7] with an unbounded archive population 
to the the 3-500 problem. From ten runs of MOEA/D with the 
population size 10011 and the 1000 generations, we obtained 
31509 non-dominated solutions in Fig. 1. All of those solutions 
were used as candidate solutions. That is, X in (8) was the set of 
the 31509 candidate solutions, and S was its subset. S was coded 
by a binary string of length 31509.  

In the meta-level multi-objective set optimization problem in (7), 
we used two reference points: (0, 0, 0) and (17000, 17000, 17000). 
We used NSGA-II to search for Pareto optimal solution sets of the 
two-objective hypervolume maximization problem. Fig. 2 shows 
the obtained non-dominated solution sets. Each point in Fig. 2 is a 
set of candidate solutions as shown in Fig. 3.  
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Figure 1. Obtained solutions of the 3-500 problem.  
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Figure 2. Obtained non-dominated solution sets. 
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Figure 3. Solution sets corresponding to A-D in Fig. 2. 

5. CONCLUDING REMARKS 
We proposed an idea of a meta-level multi-objective formulation 
of set optimization using multiple reference points. The proposed 
formulation is explained through computational experiments. As 
shown in Fig. 3, a number of solution sets are obtained from our 
approach. Our approach can be used for solution selection (i.e., to 
choose a small number of solutions to be presented to the decision 
maker from a large number of obtained non-dominated solutions).  
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