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ABSTRACT
This paper proposes to represent the preference of a deci-
sion maker by Gaussian functions on a hyperplane. The
preference is used to evaluate non-dominated solutions as a
second criterion instead of the crowding distance in NSGA-
II. High performance of our proposal is demonstrated for
many-objective DTLZ problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Methods

General Terms
Algorithms

Keywords
Preference, hyperplane, many-objective optimization,
evolutionary multi-objective optimization (EMO)

1. INTRODUCTION
As reviewed in [4], evolutionary multi-objective optimiza-

tion (EMO) algorithms often degrade their search ability
for optimization problems with more than three objectives
which we refer to as many-objective problems. That is, se-
lection pressure generated by the Pareto dominance relation
will be lost in many-objective problems, resulting in less con-
vergence to the Pareto front. Furthermore, it will become
exponentially difficult to approximate the Pareto front at
the same quality by a finite number of solutions with an
increase in the number of objectives.

One of remedies to ease these difficulties is to incorporate
the preference of a decision maker (DM) into EMO algo-
rithms [1]. Whereas a number of preference-based EMO
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algorithms have been proposed, it is not trivial for the DM
to specify his/her preference in the algorithms.

This paper proposes a preference-based EMO algorithm
using Gaussian functions on a hyperplane in which the DM
can easily specify his/her preference. The capability of our
proposal to handle many objectives is examined through
computational experiments on DTLZ problems [3].

2. PREFERENCE REPRESENTATION
In order to calculate how much the DM prefers a solution

x, we first obtain a normalized m-objective vector f ′(x) =
(f ′

1, f
′
2, ..., f

′
m) for f(x) = (f1, f2, ..., fm) as follows:

f ′
k =

fk − fmin
k

f ext
k − fmin

k

, k = 1, 2, ...,m, (1)

where fmin
k is the minimum value for the k-th objective, fext

k

is the k-th objective value of an extreme solution xext
k for the

k-th objective. The extreme solution xext
k is identified by

finding a solution that minimizes the following achievement
scalarizing function ASF with a weight vector dk indicating
the k-axis direction (e.g., d1 = (1, 0, ..., 0));

ASF (x,dk) =
m

max
i=1

f ′
i(x)/dk,i, (2)

where dk,i = 0 is replaced with dk,i = 10−6 for avoiding a di-
vision by zero. In every generation, fmin

k and xext
k will be up-

dated for k = 1, 2, ...,m by a set of solutions from parent and
offspring populations. The extreme values fext

1 , f ext
2 , ..., fext

m

are used to define a hyperplane, and f ′ can be mapped onto
that hyperplane as h(f ′) = (h1, h2, ..., hm), where

hi =
f ′
i

f ′
1 + f ′

2 + ...+ f ′
m

, i = 1, 2, ...,m, (3)

and h1 + h2 + ... + hm = 1 holds. Fig. 1(a) shows how
normalized objective vectors a and b are mapped onto the
hyperplane for two-objective minimization. How much the
DM prefers the solution can now be calculated as follows:

p(h) =
q

max
i=1

pi(h),

pi(h) = exp{−
m∑

l=1

(hl − wi
l)

2

(sil)
2

}, i = 1, 2, ..., q, (4)

where wi
l is the center (or the mean) and sil is the spread (or

the standard deviation) of a Gaussian function. It should be
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Figure 1: Preference on a hyperplane

Preference specification

p1(h): w1 = (0.8, 0.1, 0.1), s1 = (1.0, 1.0, 1.0)
p2(h): w2 = (0.1, 0.8, 0.1), s2 = (1.0, 1.0, 1.0)
p3(h): w3 = (0.1, 0.1, 0.8), s3 = (1.0, 1.0, 1.0)
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Figure 2: Solutions obtained at the 1000th genera-
tion by P-NSGA-II for three-objective DTLZ1

noted that q sets of m Gaussian functions are used to repre-
sent the preference in Eq. (4). In this paper, we assume that
the center vector wi and the spread vector si have already
been specified by the DM under the following condition;

wi = (wi
1, w

i
2, ..., w

i
m), wi

1 + wi
2 + ...+ wi

m = 1,

si = (si1, s
i
2, ..., s

i
m),

wi
j ≥ 0 and sij > 0 for j = 1, 2, ...,m. (5)

The preference function of Eq. (4) is used as a second cri-
terion to compare solutions instead of the crowding distance
in NSGA-II [2]. Furthermore, in order to keep diversity of
solutions, we consider the minimum distance dmin between
solutions in the objective space. In this paper, the smallest
preference function value (i.e., 0) is assigned to each solu-
tion that has a distance of dmin = 0.01 or less to its nearest
neighbor in the objective space. We also modified the parent
selection mechanism of NSGA-II from tournament selection
to random selection.

3. COMPUTATIONAL EXPERIMENTS
The solutions obtained by our preference-based NSGA-II

(P-NSGA-II) for three-objective DTLZ1 are illustrated in
Fig. 2 with three sets of Gaussian functions. Next, we cal-
culate relative hypervolume and convergence measures [5] to
evaluate solutions obtained by NSGA-II and P-NSGA-II on
DTLZ problems. In P-NSGA-II, w = (1/m, 1/m, ..., 1/m)
and s = (1.0, 1.0, ..., 1.0) are used for a set of Gaussian func-
tions where m is the number of objectives. The average
results over 20 runs are summarized in Table 1. From the

Table 1: Results of computational experiments

NSGA-II P-NSGA-II NSGA-II P-NSGA-II
DTLZ1 0.97321 0.83277 0.13231 0.00040006
DTLZ2 0.87082 0.60327 0.0086835 0.0035105
DTLZ3 0.87201 0.5864 0.039698 0.0061963
DTLZ4 0.87349 0.58821 0.0083337 0.0022749
DTLZ1 0 0.88211 398.89 0.004947
DTLZ2 0.06667 0.41874 1.6627 0.0082517
DTLZ3 0 0.32018 1105.5 0.068373
DTLZ4 0 0.44472 2.2595 0.0064341
DTLZ1 0 0.85317 475.75 0.0095242
DTLZ2 0.01095 0.40863 2.1514 0.012198
DTLZ3 0 0.24631 1714.2 0.12129
DTLZ4 0 0.49332 2.4821 0.013926
DTLZ1 0 0.84468 474.84 0.010666
DTLZ2 0.012874 0.39198 2.1938 0.01487
DTLZ3 0 0.21141 1819.7 3.254
DTLZ4 0 0.55092 2.497 0.024316
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results, it can be seen that the proposed modifications con-
siderably improve the performance of NSGA-II for many-
objective problems.

4. CONCLUSIONS
Preference-based NSGA-II using Gaussian functions on

a hyperplane was proposed. Its performance was demon-
strated for many-objective DTLZ problems. In our proposal,
a DM can easily specify his/her preference by the center and
spread vectors of Gaussian functions on the hyperplane. It
should be noted that the hyperplane automatically moves
toward the Pareto front together with the population of so-
lutions in our modified NSGA-II (see Fig. 1(b)). The DM
hopefully obtains solutions close to the Pareto front around
regions preferred by him/her.
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