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ABSTRACT
MOEA/D decomposes a multi-objective optimization prob-
lem (MOP) into a set of scalar sub-problems with evenly
spread weight vectors. Recent studies have shown that the
fixed weight vectors used in MOEA/D might not be able to
cover the whole Pareto front (PF) very well. Due to this,
we developed an adaptive weight adjustment method in our
previous work by removing subproblems from the crowd-
ed parts of the PF and adding new ones into the sparse
parts. Although it performs well, we found that the sparse
measurement of a subproblem which is determined by the
m-nearest (m is the dimensional of the object space) neigh-
bors of its solution can be more appropriately defined. In
this work, the neighborhood relationship between subprob-
lems is defined by using Delaunay triangulation (DT) of the
points in the population.
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1. INTRODUCTION
In recent years, the multi-objective evolutionary algorith-

m based on decomposition (MOEA/D) has achieved a great
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success and became a popular algorithmic framework of MOEA
[4]. One of the important issues of MOEA/D, which is
the focus of this work, is the determination of weight vec-
tors. The original MOEA/D employs a fixed set of even-
ly spaced weight vectors and assumes that the uniformi-
ty of weight vectors will naturally lead to evenly spread
Pareto optimal solutions. However, the basic assumption
of MOEA/D might be violated when solving MOPs with
irregularly shaped PFs rather than PFs close to the hyper-
plane f1 + f2 + + fm = 1 (f1, ..., fm are the m objective
function values) in the objective space [2].

In our previous work, we developed an adaptive weight
adjust-ment method to improve the performance of MOEA/D
on MOPs with complex PFs. Experimental results have
shown that our previous method (AWA) [3] can significant-
ly improve the performance of MOEA/D on MOPs with
irregularly shaped or discontinuous PFs. The basic idea
of the AWA method is to remove sub-problems from the
crowded parts of the PF and add new ones into the sparse
parts. Therefore, the sparse measurement of a sub-problem
is essential to the efficiency of the newly developed AWA
method. In our original AWA method, the sparse measure-
ment of a subproblem is determined by the m-nearest neigh-
bors of its solution, in which m is the dimension of the ob-
jective space. However, the sparse measurement may not
be accurate when the solution of a sub-problem has several
close neighbors within the objective space in similar direc-
tions.

In this work, the neighborhood relationship between sub-
problems is defined by using Delaunay triangulation (DT)
of the points in the population rather than by the Euclidean
distance between solutions only. Then, a new sparse mea-
surement of a sub-problem is determined by its neighbors in
the DT net.

2. PROPOSED METHOD
In our previous work, the AWA method removes sub-

problems from the crowded parts and adds new ones into
the sparse parts. But we took only Euclidian distance based
on weight vectors into consideration, and we did not con-
sider the direction of the solution of a sub-problem. Now

93



we hope we can design one method which combines the
neighborhood-based ideology and distance-based ideology.
The triangles established by Delaunay triangulation are

closest to equilateral triangles. Assuming that all triangles
in the triangulation net are equilateral triangles, then in
this case we can obtain an absolutely evenly spaced PF.
The reality is that we can promise the differences of edges
in the Delaunay triangulation net are as small as possible.
So we can obtain a relatively evenly spaced PF. Based on
the Delaunay triangulation net of points, the sparse level of
individual among population can be defined as:

V i = (

ni∏
j=1

L
DT i

j

2 )
1
ni (1)

Where L
DT i

j

2 is the Euclidean distance from the j-th solution
to its i-th one-hop neighbor (i.e., only one edge is between
the j-th and i-th solution in the Delaunay triangulation net
of points in population ). ni is the number of one-hop neigh-
bors of the j-th individual in the Delaunay triangulation net.
Then according to our previous work, now we can re-

place the sparse measurement with our newly developed
measurement so as to describe the sparse level more ac-
curately. The experimental study compares the proposed
MOEA/D-DT with the original MOEA/D [4], our previous
work MOEA/D-AWA and NSGA-II [1]. Three tri-objective
problems with irregularly shaped PFs are used to verify the
effectiveness of the proposed approach, they are the DTLZ7
problem, WFG1 and WFG2. Tables 1 and 2 show the mean
and standard deviation of IGD and HV metrics values of
the solutions obtained by each algorithm for the three test-
ing problems. It can be seen from tables 1 and 2 that the
solutions found by MOEA/D-DT are better than MOEA/D
and MOEA/D-AWA on the three testing problems in terms
of IGD metric.

Table 1: Statistic IGD metrics values of the founded so-

lutions by the four compared algorithms. The numbers in

parentheses indicate their standard deviation and square de-

viation. Bold italics mean better result.

IGD MOEA/D-DT MOEA/D MOEA/D-AWA NSGA-II

DTLZ7
4.1839e-2 8.7534e-2 4.8099e-2 5.1691e-2
(8.5934e-4) (2.6830e-3) (2.4240e-3) (8.0104e-3)

WFG1
7.5727e-2 1.1652e-1 8.1258e-2 1.3716e-1
(2.5006e-3) (1.4964e-3) (7.8404e-4) (3.3727e-3)

WFG2
1.4643e-1 4.1251e-1 1.5957e-1 1.2428e-1
(1.1538e-1) (4.3690e-3) (1.1595e-1) (4.1300e-3)

Table 2: Statistic HV metrics values of the founded so-

lutions by the four compared algorithms. The numbers in

parentheses indicate their standard deviation and square de-

viation. Bold italics mean better result.

HV MOEA/D-DT MOEA/D MOEA/D-AWA NSGA-II

DTLZ7
1.9928e-1 1.7894e-1 1.9574e-1 2.1022e-1
(3.9804e-4) (1.3030e-3) (4.4072e-4) ( 8.2618e-4)

WFG1
9.2073e-1 9.0589e-1 9.2029e-1 8.8553e-1
(5.6878e-6) (8.1252e-6) (1.4528e-5) ( 9.5698e-6)

WFG2
8.7191e-1 7.0837e-1 8.6930e-1 8.7733e-1
(5.0990e-3) (1.1705e-5) (5.4548e-3) (1.6772e-5)

3. CONCLUSIONS
Following our previous research idea of adjusting weight

vectors in MOEA/D, a Delaunay triangulation based sparse
measurement of a sub-problem has been proposed to deter-
mine which sub-problem should be removed and which part
of Pareto front needs more sub-problems. By using Delau-
nay triangulation net of the points in the population, a new
neighborhood relationship between subproblems is defined.
The sparse measurement of a subproblem is then determined
by its neighbors in the Delaunay triangulation net. With the
advantage of considering both distance between solutions
and their distribution, the Delaunay triangulation based s-
parse measurement was expected to be more accurate than
the Euclidean distances based sparse measurement when the
solution of a sub-problem has several close neighbors within
the objective space in similar directions. Experimental re-
sults have indicated that the newly developed method can
obtain more uniformly scattered solutions than those found
by the original MOEA/D and our previous work MOEA/D-
AWA on tri-objective optimization problems with irregularly
shaped Pareto fronts.
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