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ABSTRACT
Optimizing several objectives that are often at odds with
each other provides difficult challenges that are not encoun-
tered if having only one goal at hand. One intuitive way to
solve a multi-objective problem is to aggregate the objectives
and reformulate it as an optimization problem having just a
single goal. This goal can be a designer specific aggregation
of the objectives or a characterization of knees, trade-offs,
utilities, stronger optimality concepts or preferences.

This paper examines the theoretical relationships between
two knee concepts and aggregate objective functions meth-
ods. The changes in the fitness landscape by utilizing dif-
ferent aggregations is also discussed.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; F.m [Theory of Computation]:
Miscellaneous
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1. INTRODUCTION
Given f(x) : Rn → Rm and X ⊆ Rn, the multi-objective

optimization problem (MOP ) is defined as follows:

min
x

f(x) := (f1(x), f2(x), . . . , fm(x)) s.t. x ∈ X.

A point xp ∈ X is called Pareto-optimal if no x ∈ X exists
so that fi(x) ≤ fi(xp) for all indices i with strict inequality
for at least one i. In this paper, we study in interrelation-
ships between knees (the a priori interesting Pareto-optimal
solutions) and weighted sum based aggregation techniques.

2. WEIGHTED SUM VS. UTILITY KNEE
The utility knee was introduced in [2] and is related to

the weighted sum method, a common approach for trans-
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forming a multi-objective into a single-objective optimiza-
tion problem by aggregating and weighing individual objec-
tive values. The approach draws its inspiration from utility
theory and its application proposed by von Neumann and
Morgenstern [7]. A linear utility function U(x, λ) to assess
the desirability of a solution x can be defined as follows:

U(x, λ) =

m∑
i=1

λifi(x) s.t.

m∑
i=1

λi = 1, λi ≥ 0. (1)

As computing the utility for every possible weight vector
is not practical, we use an approach, similar to the utility
computation from [1], to calculate the utility of a point.

Theorem 1. Let Λm denote the set of all feasible weight
vectors λ := {λ1, . . . , λm} for m objectives that additionally
satisfy

∑m
i=1 λi = 1 and λi ≥ 0 for all i ∈ {1, . . . ,m}. The

solution x ∈ Xp that has the minimum sum of objectives∑m
i=1 fi(x) is the solution that has the minimum expected

utility
∑m

i=1 λifi(x) over all uniformally distributed λ ∈ Λm.

From the perspective of utility theory, Theorem 1 implies
that the solution that has the minimum overall sum of objec-
tive values should always be preferred. However, it does not
imply that the utility knee always coincides with the point
minimizing the sum of all objectives. How often a given so-
lution is the best choice for a particular {λj} depends mainly
on the shape of the Pareto front and its density.

3. WEIGHTED SUM VS. PROPER KNEE
In [3–5], a concept to bound the tradeoff between individ-

ual objectives was introduced. The main idea is to bound
the trade-offs by bound by a finite number M . By minimiz-
ing M , we move towards more desirable solutions. Let I :=
{1, 2, . . . ,m}, and, for any two vectors x,y ∈ X, I<(x,y)
and I>(x,y) be defined by I<(x,y) := {i ∈ I|fi(x) < fi(y)}
and I>(x,y) := {i ∈ I|fi(x) > fi(y)}, respectively. Fur-
thermore, let S ⊆ X be an arbitrary but fixed set. The
proper utility µ(x,S) of a point x ∈ S is defined by

µ(x,S) := sup
y∈S

max
i∈I>(x,y)

min
j∈I<(x,y)

fi(x)− fi(y)

fj(y)− fj(x)
. (2)

The proper knee xPK is the minimizer of µ(x,S). It can
be related to the weighted sum as follows.

Theorem 2. Let m = 2 and an optimization problem be
given. Then, the proper knee corresponds to the point that
minimizes the sum of both objectives, i.e.,

arg inf
x∈Xp

µ(x, Xp) = arg inf
x∈X

(f1(x) + f2(x)) .
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Figure 1: Fitness landscape according to proper util-
ity values and the overall sum of objectives. While the
sum of objectives utility correctly identifies f(xPK1) and
f(xPK2) as global and f(xPKL1) and f(xPKL3) as local
proper knees, it entirely misses f(xPKL2). The point
f(xPKL2) is falsely identified as local maximum and the
actual maxima f(y1) and f(y2) correspond to the inflec-
tion points of the sum of objectives curve.

While Theorem 2 allows to find the proper knee in an
easy and convenient way for two objectives, it provides no
conclusion to how the utility landscape of a Pareto front
is actually shaped. Minimizing the sum of both objectives
yields a completely different result as depicted in Figure 1.

4. KNEE FINDING ALGORITHMS
In order to find the knee, one could use the knee definition

to induce a total order among the elements in the objective
space. We do this for the weighted sum and the proper knee
and investigate the theoretical and algorithmic implications.

We use the following dominations in NSGA-II to induce
a complete ordering.

Definition 1 (w-domination and U-domination [6]).
A solution u ∈ X w-dominates a solution v ∈ X denoted
as u �w v if

∑m
i=1 u ≤

∑m
i=1 v, A solution u ∈ X U-

dominates a solution v ∈ X denoted as u �U v if either u
Pareto-dominates v, or if u and v are nondominated and
additionally µ(u, {u,v}) < µ(v, {u,v}) holds.

We used the w-domination and the U -domination in NSGA-
II (instead of Pareto domination) and computed the number
of function evaluation required to approximate the knee to
a certain accuracy. The fitness landscape plays here an im-
portant role, although the proper knee is the same as the
weighted sum solution in the case of two objectives and if
equal weights are used (from Theorem 2). The statistical re-
sults (51 runs for each problem) are summarized in Tables 1
and 2. The values in bold show the better of the two domina-
tions. The proper utility and the sum of objective functions
of ZDT1 and ZDT2 are unimodal with just one (local and
global) proper knee. In such a case applying a weighted sum
method works better than the trade-off based approach of
U -domination. The weighted sum also is also a clear winner
if a very good approximation (ε = 1e−4) needs to be found.
However, for knee test problems, which exhibit many local
and global minima (and inflexion points, see Figure 1), U -
domination works best, especially if crude approximation of

the knee is to be found. This can be explained as follows. In
problems with multiple KKT points, the weighted sum has
more the chance of getting stuck. However, at the end if the
weighted sum is closed to the basin of attraction of global
optima, it can converge quickly. For difficult problem, it
might be useful to start with a trade-off based domination
and then later switch to a weighted sum based domination.

1 10−1 10−2 10−3 10−4

DEB2DK(k=1) 4300 7700 12700 25100 38900
DEB2DK(k=3) 4300 7600 11900 20200 52600
DO2DK(k=2,s=1) 3300 6700 11100 22100 63500
DO2DK(k=4,s=1) 3100 6600 10600 20400 69500
ZDT1 900 5100 9200 16300 35600
ZDT2 1600 5300 8600 12100 15600

Table 1: Median number of function evaluations until the
distance between the best found equal weighted sum and
the exact proper knee falls below a threshold value ε.

1 10−1 10−2 10−3 10−4

DEB2DK(k=1) 4200 7500 12500 21500 41100
DEB2DK(k=3) 4200 7600 12100 23200 96300
DO2DK(k=2,s=1) 3200 6700 10600 23500 82200
DO2DK(k=4,s=1) 3000 6500 10400 20700 78600
ZDT1 1000 5200 8700 17900 33300
ZDT2 1600 5400 8700 12200 15600

Table 2: Median number of function evaluations until
the distance between the best found knee and the exact
proper knee falls below a threshold value ε.
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