
Una-May OReilly!
The Alfa Group: AnyScale Learning for All!

!
unamay@csail.mit.edu!

!
http://groups.csail.mit.edu/EVO-DesignOpt!

Genetic Programming

A Tutorial Introduction

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.!
!

Copyright is held by the owner/author(s).!
!

GECCO '14, Jul 12-16 2014, Vancouver, BC, Canada!
ACM 978-1-4503-2881-4/14/07.!

http://dx.doi.org/10.1145/2598394.2605336 ! 1

Instructor: Una-May O’Reilly
•  Leader: AnyScale Learning For All Group, MIT CSAIL
•  Focus on solving real world, complex problems requiring

machine learning where large scale evolutionary computation is
a core capability

•  Applications include
–  Circuits, network coding
–  Sparse matrix data mapping on parallel architectures
–  Finance
–  Flavor design
–  Wind energy

»  Turbine layout
»  Resource assessment

–  ICU clinical data mining
–  Behavioral data mining – MOOCs and EDX

2

Tutorial Goals

•  Introduction to GP algorithm, given some knowledge
of genetic algorithms or evolutionary strategies

•  Become familiar with GP design properties and
recognize them

•  You could teach it in an undergrad lecture
•  Try it “out of the box” - with software libraries of

others
•  Groundwork for advanced topics

–  Theory
–  Specialized workshops – Symbolic Regression, bloat, etc
–  GP Track talks at GECCO, Proceedings of EuroGP, Genetic

Programming and Evolvable Machines

3

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components
3.  Resources and reference material
4.  Examples
5.  Deeper discussion (time permitting)

Agenda
4

227

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms

Agenda
5

Neo-Darwinian Evolution

Evolutionary Computation and Evolutionary Algorithms

•  Survival and thriving in the environment
•  Offspring quantity - based on survival of the fittest
•  Offspring variation: genetic crossover and mutation
•  Population-based adaptation over generations

6

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

•  Where there is need for complex solutions
–  evolution is a process that gives rise to complexity
–  a continually evolving, adapting process, potentially with

changing environment from which emerges modularity,
hierarchy, complex behavior and complex system
relationships

•  Combinatorial optimization
–  NP-complete and/or poorly scaling solutions via LP or

convex optimization
–  unyielding to approximations (SQP, GEO-P)
–  eg. TSP, graph coloring, bin-packing, flows
–  for: logistics, planning, scheduling, networks, bio gene

knockouts
–  Typified by discrete variables
–  Solved by Genetic Algorithm (GA)

7

Problem Domains where EAs are Used

Evolutionary Computation and Evolutionary Algorithms

•  Continuous Optimization
–  non-differentiable, discontinuous, multi-modal, large scale

objective functions
–  applications: engineering, mechanical, material, physics
–  Typified by continuous variables
–  Solved by Evolutionary Strategy (ES)

•  Program Search
–  system identification aka symbolic regression -

»  FORMULIZE EXAMPLE
»  chemical processes, financial strategies

–  design: creative blueprints, generative designs - antennae, Genr8,
chairs, lens

–  automatic programming: compiler heuristics
–  AI ODEs, invariants, knowledge discovery
–  Solved by Genetic Programming (GP)

8

228

Introduction to a Black Box GP System

9

Using Eureqa-Formulize

Fernando Torija

10

What is Formulize?

•  It is a program created to perform searches for the
relationships between different data sets.

•  Formulize uses genetic programming to test
thousands to millions of functions on the data set to
search for a solution.

•  It creates more complex functions as it tests and
produces higher ‘fitness scores’ by reducing error

•  It includes a user-friendly GUI to guide users through
the set up, running, and analysis of the search.

12

Downloading Formulize

•  To download formulize go to
http://creativemachines.cornell.edu/
eureqa_download

•  use the given links based on your operating system
to download the appropriate version. A installation
wizard will instruct you how to install the program.

•  Once Formulize has been installed, open the program
to begin.

13

229

Basic Overview
1.  To run a search, the steps follow a logical,

left-to-right reading order

2.  Upon opening Formulize, the default
(example) data set and project should be
selected. If not, select it.

14

Entering Data
1.  After selecting the default or example data set, the data should

already be entered into the spread sheet.

2.  The data entry sheet works exactly like an excel spreadsheet.

3.  At least two variables are necessary for a search (3 are given in
example data set).

15

Preparing data
1.  For the “example” data set, no

outliers exist , there are no missing
values.

2.  To edit the variables first click on
the selected variable to select its
settings.

3.  The x-variable can be normalized and
offset range from 0 to 1.
1.  This is done by checking the

appropriate box and using the
drop-down boxes to find the
suggested amount to ‘Subtract
by:’ and ‘Divide by:’.

4.  The y and w variables can be
smoothed out for a simpler, cleaner
looking search.
1.  This is done by clicking the

appropriate box and using the
slider bar until the desired
amount of smoothness is
achieved.

16

Set Target
1.  In set target, you define the

relationship being searched for
and the operations that can be
considered. The default
search relation is to find the
relationship y = f(x, w).

2.  The scroll box labeled
‘Primary Options’ contains all
the operations along with the
relative complexity of
searching over each option.
1.  For this search, be sure

that all of the ‘Basic’ along
with sine, cosine, tangent
exponential, power and
Gaussian functions are all
checked.

3.  The dropdown box directly
below this then allows you to
select the type of error
measurement.

17

230

Start Search
1.  The next tab allows you

to start the search. As
soon as the search
starts, a graph will show
the progression of error
between the best
function produced and
the data set.

2.  Next to that is a box with
pertinent solution
statistics.

18

View Results
1.  The ‘View Results’ tab can be

accessed while the search is
being performed.
–  It shows a comparison of the

best function to the data set.
–  The box to the left shows a

brief description of all of the
solutions along with the
associated error and the
function used. Clicking on
different solutions changes
the graph to the selected
solution.

–  The bottom left box shows
other pertinent statistics.

–  The bottom right box shows
the progression of complex
solutions versus the error
they produce.

19

Report/Analyze

1.  The ‘Report/Analyze’
tab allows the user to
see a compiled result
list with all appropriate
graphs next to the
given function.

2.  All results are ordered
from best to worst.

20

Final Remarks

•  At any time you may
stop the search to edit
the options by
returning to the ‘Start
Search’ and pressing
the ‘Stop’ button.

•  Pausing the search will
not allow you to change
the search settings.

21

231

Problem Domains where EAs are Used
•  Continuous Optimization

–  non-differentiable, discontinuous, multi-modal, large scale
objective functions

–  applications: engineering, mechanical, material, physics
–  Typified by continuous variables
–  Solved by Evolutionary Strategy (ES)

•  Program Search
–  system identification aka symbolic regression

»  FORMULIZE EXAMPLE
»  chemical processes, financial strategies

–  design: creative blueprints, generative designs - antennae,
Genr8, chairs, lens

–  automatic programming: compiler heuristics
–  AI ODEs, invariants, knowledge discovery
–  Solved by Genetic Programming (GP)

Evolutionary Computation and Evolutionary Algorithms

22

Key EA Data Structures

Evolutionary Computation and Evolutionary
Algorithms

POPULATION
" array of struct ind with

fields genome,
phenotype fitness

" random initialization

"  GENOTYPE is an array of gene(s)
"  GENOTYPE is input parameter to
decoder procedure that returns
PHENOTYPE

"  PHENOTYPE is input parameter
to fitness-evaluation routine that
returns a numeric variable called
FITNESS

decoder!

fitness!

genes!
GENOtypE!

phenotype!
Fitness!

Function!

Genotype-Phenotype Mapping!

Ind!
•  genotype"
• phenotype"
•  fitness"

Ind!
•  genotype"
• phenotype"
•  fitness"
!

Ind!
•  genotype"
• phenotype"
•  fitness"

Population!

23

EA Generation Loop

Evolutionary Computation and Evolutionary
Algorithms

Each generation

"  select

"  breed

"  replace

	

	

	

	

	

	

	

	

	

	

" population = random_pop_init()
" generation = 0
" while needToStop == false

" generation++
" phenotypes =decoder(genotypes)
"calculateFitness(phenotypes)
" parents = select (phenotypes)
" offspring = breed(parents.genotypes)
" population = replace(parents, offspring)
" solution = bestOf(population)
" recheck(needToStop)

24

EA Selection

Evolutionary Computation and Evolutionary Algorithms

fittest program"

least fit program"

!

!

*We give the algorithm a “seed” for its RNG.!

Principles:!
•  everyone has non-zero probability of
being an ancestor !
•  individual fitness relative to
population mean fitness or rank of
fitness is important!
•  Sometimes the best of a population is
always bred directly into next generation:
“elitism”!
!
Some standard methods:!
• Roulette wheel!
• Tournament Selection!

•  n tournments of size k!

25

232

EA Tournament Selection

winner	

player 1	

player 2	

player 3	

player 4	

4 player tournament	

Evolutionary Computation and Evolutionary Algorithms
26

EA Breeding
"  Replication of parent [inheritance]!

"  mutation - [imperfect copy]!

"  crossover - [sexual recombination]!

genes!
GENOME!

Perfect Copy of GENOME!

genes!
GENOME!

A	
B	
 0	
 A	
B	
 0	

Parent! offspring!

2 parent crossover!

A	
 0	

Child 1!

D	
0	
0	

child 2!

C	
 1	
B	
1	
1	

A	
B	
 0	
 C	
 1	

parent 1! parent 2!

1	
1	
 D	
0	
0	

1! 0! A! B! 5! 3!

Choose crossover points and apply mutation randomly "
Use a random number generator "

Evolutionary Computation and Evolutionary Algorithms
27

EA Replacement
Deterministic
•  use best of parents and offspring to replace parents
•  replace parents with offspring

Stochastic
•  some sort of tournament or fitness proportional choice
•  run a tournament with old pop and offspring
•  run a tournament with parents and offspring

Evolutionary Computation and Evolutionary Algorithms
28

EA Pseudocode
population.genotypes = random_pop_init()	

population.phenotypes =decoder(population.genotypes)	

population.fitness= calculate_fitness(population.phenotypes)	

	

• generation = 0 	

• while needToStop == false	

	
generation++	

	
parents.genotypes = select (population.fitness)	

	
offspring.genotypes = crossover_mutation(parents.genotypes)	

	
offspring.phenotypes =decoder(offspring.genotypes)	

	
offspring.fitness= calculate_fitness(offspring.phenotypes)	

	
population = replace(parents.fitness, offspring.fitness)	

	
refresh(needToStop)	

" solution = bestOf(population)	

generations	

select	

breed	

replace	

birth	

development	

fitness for breeding	

development	

fitness for breeding	

Evolutionary Computation and Evolutionary Algorithms
29

233

EA Individual Examples

Evolutionary Computation and Evolutionary
Algorithms

Problem! Gene! Genome! Phenotype! Fitness!
Function!

TSP! 110! sequence of cities! tour! tour length!

Function!
optimization! 3.21! variables x of

function! f(x)! |min-f(x)|!

graph!
k-coloring!

permutation!
element!

sequence for greedy
coloring! coloring! # of uncolored nodes!

investment!
strategy! rule! agent rule set! trading strategy! portfolio change!

30

Agenda – section review
Context: Evolutionary Computation and Evolutionary

Algorithms
–  Shown problem domains where EAs are used
–  EA Data Structure: Individual
–  EA Loop

»  Evolutionary computation which is agnostic of representation
»  Selection
»  Replication
»  Inheritance and Variation -> crossover and mutation

–  Examples of genotypes and phenotypes

Agenda
31

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions

Agenda
33

EA Individual Examples

Evolutionary Computation and Evolutionary
Algorithms

Problem! Gene! Genome! Phenotype! Fitness!
Function!

TSP! 110! sequence of cities! tour! tour length!

Function!
optimization! 3.21! variables x of

function! f(x)! |min-f(x)|!

graph!
k-coloring!

permutation!
element!

sequence for greedy
coloring! coloring! # of uncolored nodes!

investment!
strategy! rule! agent rule set! trading strategy! portfolio change!

34

234

Koza’s Executable Expressions
Pioneered circa 1988
•  Lisp S-Expressions

–  Composed of
primitives called
‘functions’ and
‘terminals’

Example:
•  primitives: + - * div

a b c d 4
•  (*(- (+ 4 c) b) (div d a))
In a Lisp interpreter:
1.  bind a b c and d
2.  Evaluate

expressions

% Lisp interpreter
(set! a 2) -> 2
(set! b 4) -> 4
(set! c 6) -> 6
(set! d 8) -> 8
(*(- (+ 4 c) b) (div d a)) -> 12
; Rule Example
(if (= a b) c d) -> 8
;Predicate:
(> c d) -> nil

 GP Evolves Executable Expressions

35

A Lisp GP system
A Lisp GP system is a large set of functions which are

interpreted by evaluating the entry function
–  Some are definitions of primitives you write!

»  (defun protectedDivide …)
–  Rest is software logic for evolutionary algorithms

Any GP system has a set of functions that are pre-
defined (by compilation or interpretation) for use
as primitives
 also has software logic that handles
–  Population initialization, iteration, selection, breeding,

replacement
GP expressions are first class objects in LISP so the

GP software logic can manipulate them as data as
well as have the interpreter read and evaluate them

GP Evolves Executable Expressions

36

A (teeny) Python GP system
•  ponyGP.py

–  Available from
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/
index.php?n=Site.PonyGP

•  Python is object oriented…
•  Individuals are objects and their genomes are trees

which can be evaluated

37

PonyGP Classes
Data Structure Perspective
•  Population

–  list of individuals
•  Individual Class

–  genome
»  Tree instance

–  fitness
•  Tree Class

–  root
»  TreeNode Instance

•  Treenode Class
–  Parent (treenode)
–  Symbol

»  List of functions and terminals
–  Children (list)

•  root embeds as children a list of lists of lists… of Tree Node
objects and is itself a Treenode

A Genome is an embedded list of lists of lists of Tree Node objects
38

235

PonyGP procedurally
•  Class Symbolic_Regression

–  initialization
–  fitness_function
–  evaluate
–  initialize_population
–  search_loop
–  tournament_selection
–  generational_replacement
–  evaluate-fitness
–  subtree_mutation
–  subtree_crossover

•  Main
–  Run initialization (parameters, symbols, fitness cases,

targets)
fitness_function=Symbolic_Regression(fitness_cases,targets,…)

39

PonyGP.py fitness evaluation
•  Initialization

Main sets:
fitness_function = Symbolic_Regression(fitness_cases,
targets, symbols.variable_map)

•  Call trace
–  Main calls search_loop

»  search_loop calls evaluate_fitness
§  evaluate_fitness

v  Loops and calls fitness_function for each ind in population
v  fitness_function

v  Zero’s fitness of ind
v  Loops through training cases and calls evaluate(root)

v  evaluate is the recursive interpreter of root

40

PonyGP.py evaluate

41

Functions Used in GP Expressions

Predicate
•  > < == <>
•  (isBlue <arg>)
Other functions
•  (addOne <arg>)
•  (Max <list>), Max(x,y)
•  (Mean<list>), Mean(x,y)
See Eureqa user guide for
other examples

–  http://creativemachines.cornell.edu/sites/
default/files/Eureqa_User_Guide.pdf

GP Evolves Executable Expressions

Arithmetic
•  +, - , div, mult

–  Division must be protected
–  Return 1 if divisor = 0

•  Transcendental: log, exp,
•  Trigonometric: cos, sine,
Boolean
•  AND NOT OR NAND
Logical
•  (IF <pred> <True> <False>)
Iteration
•  (OVER <list> <function>)

42

236

Details When Using Executable Expressions
•  Sufficiency

–  Make sure a solution can be plausibly expressed when
choosing your primitive set

»  Functions must be wisely chosen but not too complex
»  General primitives: arithmetic, boolean, condition, iteration,

assignment
»  Problem specific primitives

–  Can you handcode a naïve solution?
–  Balance flexibility with search space size

•  Closure
–  Design functions with wrappers that accept any type of

argument
–  Often types will semantically clash…have a default way of

dealing with this
•  The value of typing

–  Strongly typed GP only evolves expressions within type rules
–  Trades off semantic structure with flexible search

GP Evolves Executable Expressions
43

Abstract Syntax Trees
Motivation: GP needs to be able to crossover and
mutate executable expressions, how?

–  3+2
–  (+ 2 3) ; same as above, different syntax
–  (3 2 +) ; same too

•  Expressions can be represented universally by an
abstract syntax via a tree
–  Tree traversal is syntax and control flow

GP Evolves Executable Expressions
44

Abstract Syntax Trees

GP Evolves Executable Expressions

•  Whether parsed preorder (node, left-child, right-child) or!
postorder (left-child, right-child, node) or inorder (left, node, right)!
the expression evaluates to the same result!

Inorder: 2+3!

preorder: + 2 3!

Post-order: 2 3 +! Inorder: (2-3) + (a max best)!

preorder: (+ (-2 3) (max a best))!

Post-order: (2 3 -) (a best max) +)!

+!

2! 3!
+!

-! max!

2! 3! a! best!

• (tree)GP uses an expression tree as its genotype structure!

45

Agenda Review
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
–  Lisp S-expressions
–  Functions and terminals
–  Closure and sufficiency
–  abstract syntax trees

Agenda
46

237

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components

Agenda
47

Population Initialization
•  Fill population with random expressions

–  Create a function set Φ and a corresponding function-count set
–  Create an terminal set (arg-count = 0), Τ	

–  draw from F with replacement and recursively enumerate its

argument list by additional draws from Φ U Τ.
–  Recursion ends at draw of a terminal
–  requires closure and/or typing

•  maximum tree height parameter
–  At max-height-1, draw from Τ only

•  “ramped half-half” method ensures diversity
–  equal quantities of trees of each height
–  half of height’s trees are full

»  For full tree, only draw from terminals at max-height-1

Nuts and Bolts GP Design
48

Determining a Expression’s Fitness
•  One test case:

–  Execute the expression with the problem decision variables (ie
terminals) bound to some test value and with side effect values
initialized

–  Designate the “result” of the expression
•  Measure the error between the correct output values for the

inputs and the result of the expression
–  Final output may be side effect variables, or return value of

expression
–  Eg. Examine expression result and expected result for regression
–  Eg. the heuristic in a compilation, run the binary with different

inputs and measure how fast they ran.
–  EG, Configure a circuit from the genome, test the circuit with an

input signal and measure response vs desired response
•  Usually have more than one test case but cannot enumerate

them all
–  Use rational design to create incrementally more difficult test cases

(eg block stacking)
–  Use balanced data for regression

Nuts and Bolts GP Design
49

Things to Ensure to Evolve Programs
•  Programs of varying length and structure

must compose the search space
•  Closure
•  Crossover of the genotype must preserve

syntactic correctness so the program can
be directly executed

Nuts and Bolts GP Design
50

238

if

S

t2

T not

sum sum

>

t1 t5

Parent 2

if

G

av

<

t2

R and

t1

sum sum

>

t1 t5

Child 1

t3

=
max

t4

if

S T not

Child 2

if

G

av

<

t2 t3

=
max

t4

and

t1

Parent 1

R

GP Tree Crossover

Nuts and Bolts GP Design
51

Tree Crossover Details
•  Crossover point in each

parent is picked at random
•  Conventional practices

–  All nodes with equal
probability

–  leaf nodes chosen with 0.1
probility and non-leaf with
0.9 probability

•  Probability of crossover
–  Typically 0.9

•  Maximum depth of child is a
run parameter
–  Typically ~ 15
–  Can be size instead

•  Two identical parents rarely
produce offspring that are
identical to them

•  Tree-crossover produces
great variations in offspring
with respect to parents

•  Crossover, in addition to
preserving syntax, allows
expressions to vary in
length and structure (sub-
expression nesting)

Nuts and Bolts GP Design
52

Crossover in PonyGP.py
def subtree_crossover(parent1, parent2):
 #TODO have X tries for finding crossover points
 offspring = (Individual(parent1.genome),
 Individual(parent2.genome))
 if random.random() < CROSSOVER_PROBABILITY:
 node = random.choice(offspring[0].genome.depth_first(offspring[0].genome.root))
 if node.symbol in symbols.functions:
 nodes = offspring[1].genome.depth_first(offspring[1].genome.root)
 possible_nodes = []
 for _node in nodes:
 if _node.symbol == node.symbol:
 possible_nodes.append(_node)
 if possible_nodes:
 _node = random.choice(possible_nodes)
 node_parents = (node.parent, _node.parent)
 node_copy = copy.copy(node)
 node = _node
 node.parent = node_parents[0]
 _node = node
 _node.parent = node_parents[1]

 #TODO size checking
 return offspring

53

GP Tree Mutation
•  Often only crossover is used
•  But crossover behaves often like macro-mutation
•  Mutation can be better tuned to control the size of

the change
•  A few different versions

Nuts and Bolts GP Design
54

239

if

G

av

<

t2 t3

=
max

t4

and

t1

Parent

R
if

G

av

<

t2 t1

=
max

t4

and

t1

Mutant-subst

R

if

G

av

<

t2 t3

=

t4

and

t1

Mutant-deletion
R

if

G

av

<

t2

t3

=
max

t4

and

t1

Mutant-addition
R

max

HVL-Mutation: substitution, deletion, insertion

Nuts and Bolts GP Design
55

Other Sorts of Tree Mutation
•  Koza:

–  Randomly remove a sub-tree and replace it
–  Permute: mix up order of args to operator
–  Edit: + 1 3 -> 4, and(t t) -> t
–  Encapsulate: name a sub-tree, make it one node and allow

re-use by others (protection from crossover)
»  Developed into advanced GP concept known as

§  Automatic module definition
§  Automatically defined functions (ADFs)

•  Make your own
–  Could even be problem dependent (what does a subtree

do? Change according to its behavior)

Nuts and Bolts GP Design
56

Subtree Mutation in PonyGP.py
def subtree_mutation(individual):
 if random.random() < MUTATION_PROBABILITY:
 #Pick node
 node =
random.choice(individual.genome.depth_first(individual.genome.root))
 #Clear children
 node.children[:] = []
 node_depth = individual.genome.get_depth(node)
 node.symbol = symbols.get_rnd_symbol(node_depth, MAX_DEPTH)
 #Grow tree
 if node.symbol in symbols.functions:
 individual.genome.grow(node, node_depth, MAX_DEPTH)

 return individual

57

Selection in GP

•  Proceeds in same manner as evolutionary algorithm
–  Same set of methods
–  Conventionally use tournament selection
–  Also see fitness proportional selection
–  Cartesian genetic programming:

»  One parent: generate 5 children by mutation
»  Keep best of parents and children and repeat

§  If parent fitness = child fitness, keep child

58

240

Top Level GP Algorithm

Nuts and Bolts GP Design - Summary

Begin	

	
pop = random programs from a set of operators and operands	

	
repeat	

	
 	
execute each program in pop with each set of inputs	

	
 	
measure each program’s fitness	

	
 	
repeat	

	
 	
 	
select 2 parents	

	
 	
 	
copy 2 offspring from parents	

	
 	
 	
 	
crossover	

	
 	
 	
 	
mutate	

	
 	
 	
add to new-pop	

	
 	
until pop-size	

	
pop = new-pop	

	
until max-generation 	

	
 	
or	

	
 adequate program found	

End	

Grow or Full!

• Tournament selection!
• Fitness proportional selection!
• Your favorite selection!

Ramped-half-half!

Prepare input data!
Designate solution!
Define error between actual!
and expected!

Sub-tree crossover!• HVL-mutate!
• Subtree subst!
• Permute!
• Edit!
• Your own!

Max-init-tree-height!

Prob to crossover!

Max-tree-height!

Mutation probs!

Tournament size!

Leaf:node bias!

59

GP Preparatory Steps
1.  Decide upon functions and terminals

–  Terminals bind to decision variables in problem
–  Defines the search space

2.  Set up the fitness function
–  Translation of problem goal to GP goal
–  Minimization of error between desired and evolved
–  Maximization of a problem based score

3.  Decide upon run parameters
–  Population size is most important

»  Budget driven or resource driven
–  GP is robust to many other parameter choices

4.  Determine a halt criteria and result to be returned
–  Maximum number of fitness evaluations
–  Time
–  Minimum acceptable error
–  Good enough solution (satisficing)

Nuts and Bolts GP Design
60

GP Parameters
•  Population size
•  Number of generations
•  Max-height of trees on

random initialization
–  Typically 6

•  Probability of crossover
–  Higher than mutation
–  0.9
–  Rest of offspring are copied

•  Probability of mutation
–  Probabilities of addition,

deletion and insertion

•  Population initialization
method
–  Ramped-half-half
–  All full
–  All non-full

•  Selection method
–  Elitism?

•  Termination criteria
•  Fitness function
•  what is used as “solution”

of expression

Nuts and Bolts GP Design
61

Run Level GP Flowchart

Nuts and Bolts GP Design
From http://www.genetic-programming.com/gpflowchart.html

62

241

ponyGP.py from command line
if __name__ == '__main__':
 #TOTO too many global variables
 ARITIES = {"x[0]": 0, "x[1]": 0, "0.1": 0, "1.0": 0, "5.0": 0, "*": 2,
 "+": 2, "-": 2}
 VARIABLE_PREFIX = 'x'
 POPULATION_SIZE = 4
 MAX_DEPTH = 4
 DEFAULT_FITNESS = -10000
 GENERATIONS = 2
 ELITE_SIZE = 1
 SEED = 0
 CROSSOVER_PROBABILITY = 0.5
 MUTATION_PROBABILITY = 0.1
 random.seed(SEED)
 #TODO function showing how to compile the code and then run instead of interpret
 symbols = Symbols(ARITIES, VARIABLE_PREFIX)
 fitness_cases = [
 [0, 0],
 [1, 1]
]
 targets = [0, 1]
 fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_map)
 main()

63

 ponyGP.py main()
def main():
 #Create population
 individuals = initialize_population()
 best_ever = search_loop(individuals)
 print("Best train:" + str(best_ever))
 #Test on out-of-sample data
 fitness_cases = [
 [0, 1],
 [1, 1]
]
 targets = [1, 1]
 fitness_function =
Symbolic_Regression(fitness_cases, targets,
symbols.variable_map)
 fitness_function(best_ever)
 print("Best test:" + str(best_ever))

64

Agenda Checkpoint
Nuts and Bolts GP Design
•  How we create random GP expressions
•  How we create a diverse population of expressions
•  A general procedure for fitness function design
•  How we mutate and crossover expressions
•  Selection
•  Put it together: one algorithm, at run level

Agenda
65

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components
3.  Resources and reference material

Agenda
66

242

Reference Material
Where to identify conference and journal material
•  Genetic Programming Bibiliography

–  http://www.cs.bham.ac.uk/~wbl/biblio/
Online Material
•  ACM digital library: http://portal.acm.org/

–  GECCO conferences
–  GP conferences (pre GECCO),

•  Evolutionary Computation Journal (MIT Press)
•  IEEE digital library: http://www.computer.org/portal/

web/csdl/home
–  Congress on Evolutionary Computation (CEC)
–  IEEE Transactions on Evolutionary Computation

•  Springer digital library: http://www.springerlink.com/
–  European Conference on Genetic Programming: “EuroGP”

67

GP Software
Commonly used in published research (and somewhat active):
•  Heuristic lab (using grammar guided GP) , GEVA (UCD)
•  EPOCHx
•  DEAP, JGAP
•  Java: ECJ, TinyGP,
•  Matlab: GPLab, GPTips
•  C/C++: MicroGP
•  Python: DEAP, PyEvolve
•  .Net: Aforge.NET
Others
•  http://www.epochx.org/index.php

Strongly typed GP, Grammatical evolution, etc
Lawrence Beadle and Colin G Johnson

•  http://www.tc33.org/genetic-programming/genetic-
programming-software-comparison/
–  Dated Feb 15, 2011

68

Genetic Programming Benchmarks

Genetic programming needs better benchmarks
–  James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro

Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec,
Robin Harper, Kenneth De Jong, and Una-May O’Reilly.

–  In Proceedings of GECCO 2012, Philadelphia, 2012. ACM.

•  Related benchmarks wiki
–  http://GPBenchmarks.org

69

Software Packages for Symbolic Regression

No Source code available
•  Datamodeler - mathematica, Evolved Analytics
•  Eureqa II/ Formulize - a software tool for detecting

equations and hidden mathematical relationships in
data
–  http://creativemachines.cornell.edu/eureqa
–  Plugins to Matlab, mathematica, Python
–  Convenient format for data presentation
–  Standalone or grid resource usage
–  Windows, Linux or Mac
–  http://www.nutonian.com/ for cloud version

•  Discipulus™ 5 Genetic Programming Predictive
Modelling

70

243

Reference Material - Books
•  Genetic Programming, James McDermott and Una-May O'Reilly, In the

Handbook of Computational Intelligence (forthcoming), Topic Editors: Dr. F.
Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and Prof.
Witold Pedrycz.

•  Essentials of Metaheuristics, Sean Luke, 2010
•  Genetic Programming: From Theory to Practice

–  10 years of workshop proceedings, on SpringerLink, edited
•  A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu

and online digitally
•  Advances in Genetic Programming

–  3 years, each in different volume, edited
•  John R. Koza

–  Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT
Press)

–  Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press)
–  Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III,

David Andre, and Martin A. Keane, (Morgan Kaufmann)
–  Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A.

Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza
•  Linear genetic programming, Markus Brameier, Wolfgang Banzhaf,

Springer (2007)
•  Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone,

1997 (Morgan Kaufmann)

71

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components
3.  Resources and reference material
4.  Examples

Agenda

Simple Symbolic Regression
•  Given a set of independent

decision variables and
corresponding values for a
dependent variable

•  Want: a model that predicts the
dependent variable

–  Eg: linear model with numerical
coefficients

»  Y= aX1 + bX2 + c(X1X2)
–  Eg: non-linear model

»  y= a x12 + bx23
–  Prediction accuracy: minimum

error between model prediction and
actual samples

•  Usually: designer provides a model
and a regression (ordinary least
squares, Fourier series)
determines coefficients

•  With genetic programming, the
model (structure) and the
coefficients can be learned

•  Example: y=f(x)
•  Domain of x [-1.0,+1.0]
•  Choose the operands

–  X
•  Choose the operators

–  +, - , *, / (protected)
–  Maybe also sin, cos, exp, log

(protected)
•  Fitness function: sum of absolute

error between yi, and expression’s
return values

•  Prepare 20 points for test cases
•  Test problem:

–  Y=x4 + x3 + x2 + x
–  GP can create coefficients (x/x div x

+x = 1/2) but…

GP Examples
74

Symbolic Regression with Numeric
Coefficients:Ephemeral Random Constants

•  New Test problem:

–  Y=3x4 + 10x3 + 2x2 + 3x

•  requires constant creation
•  Ephemeral random constants

provide GP with numerical
solution components

•  Provide ERC set

•  Include R among the operands.

When individual is to be
randomly created and R is
drawn, one of the elements in
R becomes the new operand.

•  GP only has the constants
that are randomly drawn in
the initial population

•  Constants could be lost
through the selection
process (no expression with
a constant survives
reproduction)

•  But, GP has more primitive
material to work with

•  It works…partially
•  Issue with size of constants,

coordination of model and
coefficient search, as a
“clump” of numbers grows,
it is more vulnerable to
crossover disruption

GP Examples

€

R = {−10,−9,−8,...0...8,9,10}

75

244

The Block Stacking Problem

Block Stacking Example

Goal: a plan to rearrange the current state of stack and table!
 into the goal stack!

Current State"

A"

C"

F"
E"

D" B"

stack!

table!

table

Goal Stack"

A"

B"
C"

D"

E"
F"

stack!

Koza-92

76

Block Stacking Problem: Primitives
•  State (updated via side-

effects)
–  *currentStack*
–  *currentTable*

•  The operands
–  Each block by label

•  Operators returning a block
based on current stack
–  top-block
–  next-needed
–  top-correct

•  Block Move Operators
return boolean
–  Return nil if they do

nothing, t otherwise
–  Update *currentTable* and

currentStack
–  to-stack(block)
–  to-table(block)

•  Sequence Operator returns
boolean
–  Do-until(action, test)

»  Macro, iteration timeouts
»  Returns t if test satisified,

nil if timed out
•  Boolean operators

–  NOT(a), EQ(a b)

Block Stacking Example
77

Random Block Stacking Expressions
•  eq(to-table(top-block) next-needed)

–  Moves top block to table and returns nil
•  to-stack(top-block)

–  Does nothing
•  eq(to-stack(next-needed)

 eq (to-stack(next-needed) to-stack(next-needed)))
–  Moves next-needed block from table to stack 3 times

•  do-until(to-stack(next-needed)
 (not(next-needed))

 - completes existing stack correctly (but existing
stack could be wrong)

Block Stacking Example
78

Block Stacking Fitness Cases

•  different initial stack and table
configurations (Koza - 166)
–  stack is correct but not complete
–  top of stack is incorrect and stack is incomplete
–  Stack is complete with incorrect blocks

•  Each correct stack at end of expression
evaluation scores 1 “hit”

•  fitness is number of hits (out of 166)

Block Stacking Example
79

245

Evolved Solutions to Block Stacking
eq(do-until(to-table(top-block) (not top-block))
 do-until(to-stack(next-needed) (not next-needed)

–  first do-until removes all blocks from stack until it is empty and top-block

returns nil
–  second do-until puts blocks on stacks correctly until stack is correct and

next-needed returns nil
–  eq is irrelevant boolean test but acts as connective
–  wasteful in movements whenever stack is correct

•  Add a fitness factor for number of block movements
do-until(eq (do-until (to-table(top-block)
 (eq top-block top-correct))
 (do-until (to-stack(next-needed) (not next-needed))
 (not next-needed)

–  Moves top block of stack to table until stack is correct
–  Moves next needed block from table to stack
–  Eq is again a connective, outer do-until is harmless, no-op

 Block Stacking Example

80

More Examples of Genetic Programming
•  Evolve priority functions

that allow a compiler to
heuristically choose
between alternatives in
hyper-block allocation

•  Evolve a model that
predicts, based on past
market values, whether a
stock’s value will increase,
decrease or stay the same
–  Measure-correlate-predict a

wind resource
–  ICU clinical forecasting

»  FlexGP

•  Flavor design
–  Model each panelist

»  Advanced methods for
panelist clustering,
bootstrapped flavor
optimization

•  Community Benchmarks
–  Artifical Ant
–  Boolean Multiplexor

•  FlexGP
–  Cloud scale, flexibly

factored and scaled GP

GP Examples
81

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components
3.  Resources and reference material
4.  Examples
5.  Deeper discussion (time permitting)

Agenda
82

How Does it Manage to Work
•  Exploitation and exploration

–  Selection
–  Crossover

•  Selection
–  In the valley of the blind,

the one-eyed man is king
•  Crossover: combining
•  Koza’s description

–  Identification of sub-trees
as sub-solutions

–  Crossover unites sub-
solutions

•  For simpler problems it
does work

•  Current theory and
empirical research have
revealed more complicated
dynamics

Time Permitting
83

246

Why are we still here?
Issues and Challenges

•  Trees use up a lot of
memory

•  Trees take a long time
to execute
–  Change the language for

expressions
»  C, Java

–  Pre-compile the
expressions, PDGP
(Poli)

–  Store one big tree and
mark each pop member
as part of it

»  Compute subtrees for
different inputs, store
and reuse

•  Bloat: Solutions are full of
sub-expressions that may
never execute or that
execute and make no
difference

•  Operator and operand sets
are so large, population is
so big, takes too long to run

•  Runs “converge” to a non-
changing best fitness
–  No progress in solution

improvement before a good
enough solution is found

Time Permitting
84

Runs “converge”: Evolvability
•  Is an expression tree ideal for evolvability?
•  Trees do not align, not mixing likes with likes as we

would do in genetic algorithm
•  Biologically this is called “non-homologous”
•  One-point crossover

–  By Poli & Langdon
–  Theoretically a bit more tractable
–  Not commonly used
–  Still not same kind of genetic material being swapped

Time Permitting
 85

Evolvability - modularity and reuse
•  Expression tree must be big

to express reuse and
modularity

•  Is there a better way to
design the genome to allow
modularity to more easily
evolve?

Time Permitting
87

Evolvability: modularity and reuse

Time Permitting
88

247

Register Machine Genotype
•  linear genotype, varying length, direct data

Time Permitting

CPU Registers

A B C
122 88 56

genotype b = b+c
a = a xor c
c = b*c
c = c-a

P1

P2

b=…

a=…

c=…

c=…

b=…

a=…

c=…

c=…

1
2
3

5
4

6
7
8

3

4
5
6

1
2

7
8

C1 C2

Crossover

89

Register Machine Advantages
•  Easier on memory and crossover handling
•  Supports aligned “homologous” crossover
•  Registers can act as poor-man’s modules
•  The primitive level of expressions allows for

–  Potentially more easily identifiable building blocks
–  Potentially less context dependent building blocks

•  The register level instructions can be further
represented as machine instructions (bits) and run
native on the processor
–  AIM-GP (Auto Induction of Machine Code GP)
–  Intel or PPC or PIC, java byte code,
–  Experience with RISC or CISC architectures
–  Patent number: 5946673, DISCIPLUS system

Time Permitting
90

Cartesian Genetic Programming

Time Permitting

•  Developer: Julian Miller
•  operators and operands are

nodes and data flow is
described by genome

•  Fixed length genome but
variable length phenome
–  Integers in blocks
–  For each block, integers to

name inputs and operator
•  Unexpressed genetic

material can be turned on
later

•  No bloat observed (plus
nodes are upper bounded

91

Dealing with Bloat
•  Why does it occur?

–  Crossover is destructive
–  Effective fitness is selected for

•  Effective fitness
–  Not just my fitness but the

fitness of my offspring
•  Approaches

–  Avoid - change genome
structure

–  Remove: Koza’s edit operation
–  Pareto GP
–  Penalize: parsimony pressure

»  Fitness =
A(perf) + (1-a)(complexity

•  “Operator equalisation for bloat free genetic
programming and a survey of bloat control
methods”, by Sara Silva and Stephen Dignum
and Leonardo Vanneschi

–  GPEM Vol 13, #2, 2012

Examples:
•  (not (not x))
•  (+ x 0)
•  (* x 1)
•  (Move left move-right)
•  If (2=1) action

No difference to fitness (defn
by Banzhaf, Nordin and
Keller)

Can be local or global

Time Permitting
92

248

Agenda
Context: Evolutionary Computation and Evolutionary

Algorithms
1.  GP is the genetic evolution of executable

expressions
2.  Nuts and Bolts Descriptions of Algorithm

Components
3.  Resources and reference material
4.  Examples
5.  Deeper discussion (time permitting)

Agenda
93

The End

94

PonyGP.py search_loop From command line
if __name__ == '__main__':
 #TOTO too many global variables
 ARITIES = {"x[0]": 0, "x[1]": 0, "0.1": 0, "1.0": 0, "5.0": 0, "*": 2,
 "+": 2, "-": 2}
 VARIABLE_PREFIX = 'x'
 POPULATION_SIZE = 4
 MAX_DEPTH = 4
 DEFAULT_FITNESS = -10000
 GENERATIONS = 2
 ELITE_SIZE = 1
 SEED = 0
 CROSSOVER_PROBABILITY = 0.5
 MUTATION_PROBABILITY = 0.1
 random.seed(SEED)
 #TODO function showing how to compile the code and then run instead of interpret
 symbols = Symbols(ARITIES, VARIABLE_PREFIX)
 fitness_cases = [
 [0, 0],
 [1, 1]
]
 targets = [0, 1]
 fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_map)
 main()

249

main()
def main():
 #Create population
 individuals = initialize_population()
 best_ever = search_loop(individuals)
 print("Best train:" + str(best_ever))
 #Test on out-of-sample data
 fitness_cases = [
 [0, 1],
 [1, 1]
]
 targets = [1, 1]
 fitness_function =
Symbolic_Regression(fitness_cases, targets,
symbols.variable_map)
 fitness_function(best_ever)
 print("Best test:" + str(best_ever))

250

