

Problem Domains where EAs are UsedWhere there is need for complex solutions

- evolution is a process that gives rise to complexity
- a continually evolving, adapting process, potentially with changing environment from which emerges modularity, hierarchy, complex behavior and complex system relationships
- Combinatorial optimization
 - NP-complete and/or poorly scaling solutions via LP or convex optimization
 - unyielding to approximations (SQP, GEO-P)
 - eg. TSP, graph coloring, bin-packing, flows
 - for: logistics, planning, scheduling, networks, bio gene knockouts
 - Typified by discrete variables
 - Solved by Genetic Algorithm (GA)

Evolutionary Computation and Evolutionary Algorithms

Evolutionary Computation and Evolutionary Algorithms

What is Formulize?

- It is a program created to perform searches for the relationships between different data sets.
- Formulize uses genetic programming to test thousands to millions of functions on the data set to search for a solution.
- It creates more complex functions as it tests and produces higher 'fitness scores' by reducing error
- It includes a user-friendly GUI to guide users through the set up, running, and analysis of the search.

<text><list-item><list-item><list-item>

Preparin	g data
 For the "example" data set, no outliers exist, there are no missing values. To edit the variables first click on the selected variable to select its settings. 	Note: 1000 Rest Rest Rest Rest Rest Rest Rest Rest
 The x-variable can be normalized and offset range from 0 to 1. This is done by checking the appropriate box and using the drop-down boxes to find the suggested amount to 'Subtract by:' and 'Divide by:'. 	10 minutes 1 min
 The y and w variables can be smoothed out for a simpler, cleaner looking search. 	0.1 0 20 - 0 100 10 fine tase [↓] Angunetics [₱] on the [♠] (the tase [↓] Angunetics [₱] (the tase [↓]) Angunetics [₱] (the tase [↓]) Angunetics [₱] (the tase [↓]) (the
 This is done by clicking the appropriate box and using the slider bar until the desired amount of smoothness is 	
achieved.	
	SALL

EA Replacement Deterministic • use best of parents and offspring to replace parents • replace parents with offspring Stochastic • some sort of tournament or fitness proportional choice • run a tournament with old pop and offspring • run a tournament with parents and offspring • run a tournament with parents and offspring

Problem	Gene	Genome	Phenotype	Fitness Function
TSP	110	sequence of cities	tour	tour length
Function optimization	3.21	variables <u>x</u> of function	f(<u>x</u>)	lmin-f(<u>x</u>)l
graph k-coloring	permutation element	sequence for greedy coloring	coloring	# of uncolored no
investment strategy	rule	agent rule set	trading strategy	portfolio chan

EA Individual Examples

Problem	n	Gene	Genome	Phenotype	Fitness Function
TSP		110	sequence of cities	tour	tour length
Function optimizatio	n	3.21	variables <u>x</u> of function	f(<u>x</u>)	lmin-f(<u>x</u>)l
graph k-coloring	9	permutation element	sequence for greedy coloring	coloring	# of uncolored nodes
investmen strategy	nt	rule	agent rule set	trading strategy	portfolio change
Evolutionary Computation and Evolutionary Algorithms 34 C S					

PonyGP.py evaluate		
def evaluate(self, node):		
"""Evaluate a node"""		
if node.symbol == "+":		
return self.evaluate(node.children[0]) + self.evaluate(node.children[1])		
elif node.symbol == "-":		
return self.evaluate(node.children[0]) - self.evaluate(node.children[1])		
elif node.symbol == "*":		
return self.evaluate(node.children[0]) * self.evaluate(node.children[1])		
elif node.symbol == "/":		
numerator = self.evaluate(node.children[0])		
denominator = self.evaluate(node.children[1])		
if abs(denominator) < 0.00001:		
return numerator		
else:		
return numerator / denominator		
elif <u>node.symbol.startswith</u> (symbols.variable_prefix):		
return self.variables[self.variable_map[node.symbol]]		
else:		
#The symbol is a terminal		
return float(node.symbol)		
ANTONIA: LEATING / OT ALL	CSAIL	ANI

Arithmetic • +, -, div, mult - Division must be protected - Return 1 if divisor = 0 • Transcendental: log, exp, • Trigonometric: cos, sine, Boolean • AND NOT OR NAND Logical • (IF <pred> <true> <false>) Iteration • (OVER <list> <function>)</function></list></false></true></pred>	<pre>In GP Expressions Predicate</pre>
GP Evolves Exect	utable Expressions

Determining a Expression's Fitness One test case: Execute the expression with the problem decision variables (ie terminals) bound to some test value and with side effect values initialized - Designate the "result" of the expression Closure • Measure the error between the correct output values for the inputs and the result of the expression - Final output may be side effect variables, or return value of expression - Eq. Examine expression result and expected result for regression Eg. the heuristic in a compilation, run the binary with different inputs and measure how fast they ran. EG, Configure a circuit from the genome, test the circuit with an input signal and measure response vs desired response · Usually have more than one test case but cannot enumerate them all - Use rational design to create incrementally more difficult test cases (eg block stacking) - Use balanced data for regression AF Nuts and Bolts GP Design Nuts and Bolts GP Design 49

Things to Ensure to Evolve Programs

- Programs of varying length and structure must compose the search space
- Crossover of the genotype must preserve syntactic correctness so the program can be directly executed

50

Tree Crossover Details Crossover point in each • Two identical parents rarely parent is picked at random produce offspring that are identical to them **Conventional practices** Tree-crossover produces All nodes with equal great variations in offspring probability with respect to parents - leaf nodes chosen with 0.1 probility and non-leaf with Crossover, in addition to 0.9 probability preserving syntax, allows Probability of crossover expressions to vary in - Typically 0.9 length and structure (subexpression nesting) Maximum depth of child is a run parameter - Typically ~ 15 - Can be size instead ΔΕΑΧ Nuts and Bolts GP Design 52 CSAII

Crossover in PonyGP.py

Т	op Level	GP Alg	orithm	
Begin	= random program	s from a set o	bed-half-half f operators and operands	
repe	at		Max-init-tree-height	
•Tournament sel	•Tournament selection each program in pop with each set of inputs			
•Fitness proport •Your favorite se	ionaliselectionach lection _{peat}	program' s fitn	ess Prepare input data Designate solution	
Tournament si	ze selec	t 2 parents	Define error between actual	
	copy	2 offspring fro	nandexpected	
•HVL-mutate	Mutation probe	crossover	Sub-tree crossover	
•Permute	add to	o new-pop	Prob to crossover	
•Your own	until pop-size		Max-tree-height	
pop unti	= new-pop max-generation		Leaf:node bias	
	or			
	adequate program	found	1 - Ch	
	Nuts and Bolts (GP Design - S 59	ummary CSAIL	

deletion and insertion

GP Software Commonly used in published research (and somewhat active): Heuristic lab (using grammar guided GP), GEVA (UCD) EPOCHx DEAP, JGAP Java: ECJ. TinvGP. • Matlab: GPLab, GPTips C/C++: MicroGP Pvthon: DEAP. PvEvolve .Net: Aforge.NET Others <u>http://www.epochx.org/index.php</u> Strongly typed GP, Grammatical evolution, etc Lawrence Beadle and Colin G Johnson http://www.tc33.org/genetic-programming/geneticprogramming-software-comparison/ - Dated Feb 15, 2011 ΔΕΑΧ

Software Packages for Symbolic Regression No Source code available Datamodeler - mathematica, Evolved Analytics Eureqa II/ Formulize - a software tool for detecting equations and hidden mathematical relationships in data http://creativemachines.cornell.edu/eureqa Plugins to Matlab, mathematica, Python Convenient format for data presentation Standalone or grid resource usage Windows, Linux or Mac Discipulus™ 5 Genetic Programming Predictive Modelling

Random Block Stacking Expressions • eq(to-table(top-block) next-needed) • Moves top block to table and returns nil • to-stack(top-block) • Does nothing • eq(to-stack(next-needed) eq(to-stack(next-needed) to-stack(next-needed))) • Moves next-needed block from table to stack 3 times • do-until(to-stack(next-needed) (not(next-needed))) • completes existing stack correctly (but existing stack could be wrong)

Block Stacking Fitness Cases different initial stack and table configurations (Koza - 166) stack is correct but not complete top of stack is incorrect and stack is incomplete Stack is complete with incorrect blocks Each correct stack at end of expression evaluation scores 1 "hit" fitness is number of hits (out of 166)

PonyGP.py search_loop	
<pre>def search_loop(individuals): #Initials: first generation new_individuals = [] best_ever = None #Generation loop generation < GENERATIONS: #Dob new out for best fitness while generation < GENERATIONS: #Evaluate fitness(notividuals, fitness_function) individuals.sort() best_ever = individuals[0] #Replace individuals = generational_replacement(individuals, new_individuals) #State #TODO uninitively placed in the loop since evaluation and replacement should be before print_state(generation_individuals) #Selection parents = nourmament_selection(individuals)</pre>	
<pre>#Create new population new_individuals = [] while lgn(new_individuals) < POPULATION_SIZE: #Crossover new_individuals extend(subtree_crossover(*random.sample(parents, 2))) #Mutation new_individuals extend(subtree_mutation, new_individuals)) #Increase the generation counter generation += 1 return best_ever</pre>	

From command line	
<pre>ifname == 'main': #TOTO too many global variables ARITISE = {"X(0": 0, "X(1)": 0, "0.1": 0, "1.0": 0, "5.0": 0, "*": 2, "*": 2, "-": 2) VARIABLE_PREFIX = 'X' POPULATION_SIZE = 4 MAX_DEPTH = 4 DEFAULT_FITNESS = -10000</pre>	
GENERATIONS = 2 ELITE_SIZE = 1 SEED = 0 CROSSOVER_PROBABILITY = 0.5 MUTATION_PROBABILITY = 0.1 random.seed(SEED) #TODO function showing how to compile the code and then run instead of interpre symbols = Symbols(ARITIES, VARIABLE_PREFIX) fitness_cases = [t
[0, 0], [1, 1]] targets = [0, 1] fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_m main()	••)

main() def main(): #Create population individuals = initialize_population() best_ever = search_loop(individuals) print("Best train:" + str(best_ever)) #Test on out-of-sample data fitness_cases = [[0, 1], [1, 1]] targets = [1, 1] fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_map) fitness_function(best_ever) print("Best test:" + str(best_ever))