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Instructor: Una-May O’Reilly 
•  Leader:  AnyScale Learning For All Group, MIT CSAIL 
•  Focus on solving real world, complex problems requiring 

machine learning where large scale evolutionary computation is 
a core capability 

•  Applications include 
–  Circuits, network coding 
–  Sparse matrix data mapping on parallel architectures 
–  Finance 
–  Flavor design 
–  Wind energy 

»  Turbine layout 
»  Resource assessment 

–  ICU clinical data mining 
–  Behavioral data mining – MOOCs and EDX 
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Tutorial Goals 

•  Introduction to GP algorithm, given some knowledge 
of genetic algorithms or evolutionary strategies 

•  Become familiar with GP design properties and 
recognize them 

•  You could teach it in an undergrad lecture 
•  Try it “out of the box” - with software libraries of 

others 
•  Groundwork for advanced topics 

–  Theory 
–  Specialized workshops – Symbolic Regression, bloat, etc 
–  GP Track talks at GECCO, Proceedings of EuroGP, Genetic 

Programming and Evolvable Machines 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 
3.  Resources and reference material  
4.  Examples 
5.  Deeper discussion (time permitting) 

Agenda 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 

Agenda 
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Neo-Darwinian Evolution 

Evolutionary Computation and Evolutionary Algorithms 

•  Survival and thriving in the environment 
•  Offspring quantity - based on survival of the fittest  
•  Offspring variation: genetic crossover and mutation  
•  Population-based adaptation over generations 
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Problem Domains where EAs are Used 

Evolutionary Computation and Evolutionary Algorithms 

•  Where there is need for complex solutions  
–   evolution is a process that gives rise to complexity 
–  a continually evolving, adapting process, potentially with 

changing environment from which emerges modularity, 
hierarchy, complex behavior and complex system 
relationships  

•  Combinatorial optimization 
–  NP-complete and/or poorly scaling solutions via LP or 

convex optimization 
–  unyielding to approximations (SQP, GEO-P) 
–  eg. TSP, graph coloring, bin-packing, flows 
–  for: logistics, planning, scheduling, networks, bio gene 

knockouts 
–  Typified by discrete variables   
–  Solved by Genetic Algorithm (GA)  
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Problem Domains where EAs are Used 

Evolutionary Computation and Evolutionary Algorithms 

•  Continuous Optimization 
–  non-differentiable, discontinuous, multi-modal, large scale 

objective functions 
–  applications: engineering, mechanical, material, physics 
–  Typified by continuous variables 
–  Solved by Evolutionary Strategy (ES) 

•  Program Search  
–  system identification aka symbolic regression  - 

»  FORMULIZE EXAMPLE 
»   chemical processes, financial strategies 

–  design: creative blueprints, generative designs - antennae, Genr8, 
chairs, lens 

–  automatic programming:  compiler heuristics 
–  AI ODEs, invariants, knowledge discovery 
–  Solved by Genetic Programming (GP) 
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Introduction to a Black Box GP System 

9 

Using Eureqa-Formulize 

Fernando Torija 
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What is Formulize? 

•  It is a program created to perform searches for the 
relationships between different data sets. 

•  Formulize uses genetic programming to test 
thousands to millions of functions on the data set to 
search for a solution. 

•  It creates more complex functions as it tests and 
produces higher ‘fitness scores’ by reducing error 

•  It includes a user-friendly GUI to guide users through 
the set up, running, and analysis of the search. 

12 

Downloading Formulize 

•  To download formulize go to 
http://creativemachines.cornell.edu/
eureqa_download    

•  use the given links based on your operating system 
to download the appropriate version.  A installation 
wizard will instruct you how to install the program. 

•  Once Formulize has been installed, open the program 
to begin. 

13 
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Basic Overview 
1.  To run a search, the steps follow a logical, 

left-to-right reading order  

2.  Upon opening Formulize, the default 
(example) data set and project should be 
selected.  If not, select it. 
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Entering Data 
1.  After selecting the default or example data set, the data should 

already be entered into the spread sheet.   

2.  The data entry sheet works exactly like an excel spreadsheet. 

3.  At least two variables are necessary for a search (3 are given in 
example data set).  
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Preparing data 
1.  For the “example” data set, no 

outliers exist , there are no missing 
values. 

2.  To edit the variables first click on 
the selected variable to select its 
settings. 

3.  The x-variable can be normalized and 
offset range from 0 to 1. 
1.  This is done by checking the 

appropriate box and using the 
drop-down boxes to find the 
suggested amount to ‘Subtract 
by:’ and ‘Divide by:’. 

4.  The y and w variables can be 
smoothed out for a simpler, cleaner 
looking search. 
1.  This is done by clicking the 

appropriate box and using the 
slider bar until the desired 
amount of smoothness is 
achieved. 
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Set Target 
1.  In set target, you define the 

relationship being searched for 
and the operations that can be 
considered.  The default 
search relation is to find the 
relationship y = f(x, w). 

2.  The  scroll box labeled 
‘Primary Options’ contains all 
the operations along with the 
relative complexity of 
searching over each option.  
1.   For this search, be sure 

that all of the ‘Basic’ along 
with sine, cosine, tangent 
exponential, power and 
Gaussian functions are all 
checked. 

3.  The dropdown box directly 
below this then allows you to 
select the type of error 
measurement. 
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Start Search 
1.  The next tab allows you 

to start the search.  As 
soon as the search 
starts, a graph will show 
the progression of error 
between the best 
function produced and 
the data set. 

2.  Next to that is a box with 
pertinent solution 
statistics. 
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View Results 
1.  The ‘View Results’ tab can be 

accessed while the search is 
being performed.   
–  It shows a comparison of the 

best function to the data set. 
–  The box to the left shows a 

brief description of all of the 
solutions along with the 
associated error and the 
function used.  Clicking on 
different solutions changes 
the graph to the selected 
solution. 

–  The bottom left box shows 
other pertinent statistics. 

–  The bottom right box shows 
the progression of complex 
solutions versus the error 
they produce. 
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Report/Analyze 

1.  The ‘Report/Analyze’ 
tab allows the user to 
see a compiled result 
list with all appropriate 
graphs next to the 
given function. 

2.  All results are ordered 
from best to worst. 

20 

Final Remarks 

•  At any time you may 
stop the search to edit 
the options by 
returning to the ‘Start 
Search’  and pressing 
the ‘Stop’ button. 

•  Pausing the search will 
not allow you to change 
the search settings. 

21 
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Problem Domains where EAs are Used 
•  Continuous Optimization 

–  non-differentiable, discontinuous, multi-modal, large scale 
objective functions 

–  applications: engineering, mechanical, material, physics 
–  Typified by continuous variables 
–  Solved by Evolutionary Strategy (ES) 

•  Program Search  
–  system identification aka symbolic regression   

»  FORMULIZE EXAMPLE 
»   chemical processes, financial strategies 

–  design: creative blueprints, generative designs - antennae, 
Genr8, chairs, lens 

–  automatic programming:  compiler heuristics 
–  AI ODEs, invariants, knowledge discovery 
–  Solved by Genetic Programming (GP) 

Evolutionary Computation and Evolutionary Algorithms 

22 

Key EA Data Structures 

Evolutionary Computation and Evolutionary 
Algorithms 

POPULATION 
" array of struct ind with 

fields genome, 
phenotype fitness 

" random initialization 

"  GENOTYPE is an array of gene(s) 
"  GENOTYPE is input parameter to 
decoder procedure that returns 
PHENOTYPE 

"  PHENOTYPE is input parameter 
to fitness-evaluation routine that 
returns a numeric variable called 
FITNESS 

decoder!

fitness!

genes!
GENOtypE!

phenotype!
Fitness!

Function!

Genotype-Phenotype Mapping!

Ind!
•  genotype"
• phenotype"
•  fitness"

Ind!
•  genotype"
• phenotype"
•  fitness"
!

Ind!
•  genotype"
• phenotype"
•  fitness"

Population!
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EA Generation Loop 

Evolutionary Computation and Evolutionary 
Algorithms 

Each generation 

"  select 

"  breed 

"  replace 

	


	


	


	


	


	


	


	


	


	


" population = random_pop_init() 
" generation = 0  
" while needToStop == false 

" generation++ 
" phenotypes =decoder(genotypes) 
"calculateFitness(phenotypes) 
" parents = select (phenotypes) 
" offspring = breed(parents.genotypes) 
" population = replace(parents, offspring) 
" solution = bestOf(population) 
" recheck(needToStop) 

24 

EA Selection  

Evolutionary Computation and Evolutionary Algorithms 

fittest program"

least fit program"

!

!

*We give the algorithm a “seed” for its RNG.!

Principles:!
•  everyone has non-zero probability of 
being an ancestor !
•  individual fitness relative to 
population mean fitness or rank of 
fitness is important!
•  Sometimes the best of a population is 
always bred directly into next generation: 
“elitism”!
!
Some standard methods:!
• Roulette wheel!
• Tournament Selection!

•  n tournments of size k!

25 
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EA Tournament Selection  

winner	


player 1	


player 2	


player 3	


player 4	


4 player tournament	


Evolutionary Computation and Evolutionary Algorithms 
26 

EA Breeding 
"  Replication of parent [inheritance]!

"  mutation - [imperfect copy]!

"  crossover - [sexual recombination]!

genes!
GENOME!

Perfect Copy of GENOME!

genes!
GENOME!

A	
B	
 0	
 A	
B	
 0	

Parent! offspring!

2 parent crossover!

A	
 0	

Child 1!

D	
0	
0	

child 2!

C	
 1	
B	
1	
1	


A	
B	
 0	
 C	
 1	


parent 1! parent 2!

1	
1	
 D	
0	
0	


1! 0! A! B! 5! 3!

Choose crossover points and apply mutation randomly "
Use a random number generator "

Evolutionary Computation and Evolutionary Algorithms 
27 

EA Replacement 
Deterministic  
•  use best of parents and offspring to replace parents 
•  replace parents with offspring 

Stochastic  
•  some sort of tournament or fitness proportional choice 
•  run a tournament with old pop and offspring 
•  run a tournament with parents and offspring 

Evolutionary Computation and Evolutionary Algorithms 
28 

EA Pseudocode 
population.genotypes = random_pop_init()	

population.phenotypes =decoder(population.genotypes)	

population.fitness= calculate_fitness(population.phenotypes)	


	


• generation = 0 	


• while needToStop == false	


	
generation++	


	
parents.genotypes = select (population.fitness)	


	
offspring.genotypes = crossover_mutation(parents.genotypes)	


	
offspring.phenotypes =decoder(offspring.genotypes)	

	
offspring.fitness= calculate_fitness(offspring.phenotypes)	


	
population = replace(parents.fitness, offspring.fitness)	


	
refresh(needToStop)	


" solution = bestOf(population)	


generations	


select	


breed	


replace	


birth	


development	


fitness for breeding	


development	


fitness for breeding	


Evolutionary Computation and Evolutionary Algorithms 
29 
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EA Individual Examples 

Evolutionary Computation and Evolutionary 
Algorithms 

Problem! Gene! Genome! Phenotype! Fitness!
Function!

TSP! 110! sequence of cities! tour! tour length!

Function!
optimization! 3.21! variables x  of 

function! f(x)! |min-f(x)|!

graph!
k-coloring!

permutation!
element!

sequence for greedy 
coloring! coloring! # of uncolored nodes!

investment!
strategy! rule! agent rule set! trading strategy! portfolio change!

30 

Agenda – section review 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
–  Shown problem domains where EAs are used 
–  EA  Data Structure: Individual  
–  EA Loop 

»  Evolutionary computation which is agnostic of representation 
»  Selection 
»  Replication 
»  Inheritance and Variation -> crossover and mutation 

–  Examples of genotypes and phenotypes 

Agenda 
31 

Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 

Agenda 
33 

EA Individual Examples 

Evolutionary Computation and Evolutionary 
Algorithms 

Problem! Gene! Genome! Phenotype! Fitness!
Function!

TSP! 110! sequence of cities! tour! tour length!

Function!
optimization! 3.21! variables x  of 

function! f(x)! |min-f(x)|!

graph!
k-coloring!

permutation!
element!

sequence for greedy 
coloring! coloring! # of uncolored nodes!

investment!
strategy! rule! agent rule set! trading strategy! portfolio change!

34 
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Koza’s Executable Expressions 
Pioneered circa 1988 
•  Lisp S-Expressions  

–  Composed of 
primitives called 
‘functions’ and 
‘terminals’ 

Example:  
•  primitives: + - * div 

a b c d 4 
•  (*(- (+ 4 c) b) (div d a)) 
In a Lisp interpreter: 
1.  bind a b c and d 
2.  Evaluate 

expressions 

% Lisp interpreter 
(set! a 2) -> 2 
(set! b 4) -> 4 
(set! c 6) -> 6 
(set! d 8) -> 8 
(*(- (+ 4 c) b) (div d a)) -> 12 
; Rule Example 
(if (= a b) c d) -> 8 
;Predicate: 
(> c d) -> nil 
 
 

 
 GP Evolves Executable Expressions 

35 

A Lisp GP system  
A Lisp GP system is a large set of functions which are 

interpreted by evaluating the entry function 
–  Some are definitions of primitives you write! 

»   (defun protectedDivide …) 
–  Rest is software logic for evolutionary algorithms 

Any GP system has a set of functions that are pre-
defined (by compilation or interpretation) for use 
as primitives 
 also has software logic that handles  
–  Population initialization, iteration, selection, breeding, 

replacement 
GP expressions are first class objects in LISP so the 

GP software logic can manipulate them as data as 
well as have the interpreter read and evaluate them 

GP Evolves Executable Expressions 
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A (teeny) Python GP system 
•  ponyGP.py 

–  Available from 
http://groups.csail.mit.edu/EVO-DesignOpt/groupWebSite/
index.php?n=Site.PonyGP  

•  Python is object oriented… 
•  Individuals are objects and their genomes are trees 

which can be evaluated 

37 

PonyGP Classes 
Data Structure Perspective 
•  Population  

–  list of individuals 
•  Individual Class 

–  genome  
»  Tree instance 

–  fitness 
•  Tree Class 

–  root 
»  TreeNode Instance 

•  Treenode Class 
–  Parent (treenode) 
–  Symbol  

»  List of functions and terminals 
–  Children (list) 

•  root embeds as children a list of lists of lists… of Tree Node 
objects and is itself a Treenode 

A Genome is an embedded list of lists of lists of Tree Node objects 
38 
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PonyGP procedurally 
•  Class Symbolic_Regression 

–  initialization 
–  fitness_function 
–  evaluate 
–  initialize_population 
–  search_loop 
–  tournament_selection 
–  generational_replacement 
–  evaluate-fitness 
–  subtree_mutation 
–  subtree_crossover 

•  Main 
–  Run initialization (parameters, symbols, fitness cases, 

targets) 
fitness_function=Symbolic_Regression(fitness_cases,targets,…) 

39 

PonyGP.py fitness evaluation 
•  Initialization 

Main sets: 
fitness_function = Symbolic_Regression(fitness_cases, 
targets, symbols.variable_map) 

•  Call trace 
–  Main calls search_loop 

»  search_loop calls evaluate_fitness 
§  evaluate_fitness  

v  Loops and calls fitness_function for each ind in population 
v  fitness_function 

v  Zero’s fitness of ind 
v  Loops through training cases and calls evaluate(root) 

v  evaluate is the recursive interpreter of root 

40 

PonyGP.py evaluate  

41 

Functions Used in GP Expressions 

  
 

Predicate 
•  > < == <> 
•  (isBlue <arg>) 
Other functions 
•  (addOne <arg>) 
•  (Max <list>), Max(x,y) 
•  (Mean<list>), Mean(x,y) 
See Eureqa user guide for 
other examples  

–  http://creativemachines.cornell.edu/sites/
default/files/Eureqa_User_Guide.pdf 

GP Evolves Executable Expressions 

Arithmetic 
•  +, - , div, mult 

–  Division must be protected 
–  Return 1 if divisor = 0 

•  Transcendental: log, exp,  
•  Trigonometric: cos, sine,  
Boolean 
•  AND NOT OR NAND 
Logical 
•  (IF <pred> <True> <False>) 
Iteration 
•  (OVER <list> <function>) 
 

42 
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Details When Using Executable Expressions 
•  Sufficiency 

–  Make sure a solution can be plausibly expressed when 
choosing your primitive set 

»  Functions must be wisely chosen but not too complex 
»  General primitives: arithmetic, boolean, condition, iteration, 

assignment 
»  Problem specific primitives 

–  Can you handcode a naïve solution? 
–  Balance flexibility with search space size 

•  Closure 
–  Design functions with wrappers that accept any type of 

argument 
–  Often types will  semantically clash…have a default way of 

dealing with this 
•  The value of typing 

–  Strongly typed GP only evolves expressions within type rules 
–  Trades off semantic structure with flexible search 

GP Evolves Executable Expressions 
43 

Abstract Syntax Trees 
Motivation: GP needs to be able to crossover and 
mutate executable expressions, how? 

–  3+2  
–  (+ 2 3)  ; same as above, different syntax 
–  (3 2 +) ; same too 

•  Expressions can be represented universally by an 
abstract syntax via a tree 
–  Tree traversal is syntax and control flow 

 

GP Evolves Executable Expressions 
44 

Abstract Syntax Trees 

GP Evolves Executable Expressions 

•  Whether parsed preorder (node, left-child, right-child) or!
postorder (left-child, right-child, node) or inorder (left, node, right)!
the expression evaluates to the same result!

Inorder: 2+3!

preorder: + 2 3!

Post-order: 2 3 +! Inorder: (2-3) + (a max best)!

preorder: (+ (-2 3) (max a best))!

Post-order: (2 3 -) (a best max) +)!

+!

2! 3!
+!

-! max!

2! 3! a! best!

• (tree)GP uses an expression tree as its genotype structure!

45 

Agenda Review 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
–  Lisp S-expressions 
–  Functions and terminals 
–  Closure and sufficiency 
–  abstract syntax trees  

Agenda 
46 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 

Agenda 
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Population Initialization 
•  Fill population with random expressions 

–  Create a function set Φ and a corresponding function-count set 
–  Create an terminal set (arg-count = 0), Τ	

–  draw from F with replacement and recursively enumerate its 

argument list by additional draws from Φ U Τ. 
–  Recursion ends at draw of a terminal 
–  requires closure and/or typing 

•  maximum tree height parameter 
–  At max-height-1, draw from Τ only 

•  “ramped half-half” method ensures diversity 
–  equal quantities of trees of each height  
–  half of height’s trees are full 

»  For full tree, only draw from terminals at max-height-1 

Nuts and Bolts GP Design 
48 

Determining a Expression’s Fitness 
•  One test case: 

–  Execute the expression with the problem decision variables (ie 
terminals) bound to some test value and with side effect values 
initialized 

–  Designate the “result” of the expression 
•  Measure the error between the correct output values for the 

inputs and the result of the expression  
–  Final output may be side effect variables, or return value of 

expression 
–  Eg. Examine expression result and expected result for regression 
–  Eg. the heuristic in a compilation, run the binary with different 

inputs and measure how fast they ran. 
–  EG, Configure a circuit from the genome, test the circuit with an 

input signal and measure response vs desired response  
•  Usually have more than one test case but cannot enumerate 

them all 
–  Use rational design to create incrementally more difficult test cases 

(eg block stacking) 
–  Use balanced data for regression 

Nuts and Bolts GP Design 
49 

Things to Ensure to Evolve Programs 
•  Programs of varying length and structure 

must compose the search space 
•  Closure 
•  Crossover of the genotype must preserve 

syntactic correctness so the program can 
be directly executed 

Nuts and Bolts GP Design 
50 
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if 

S 

t2 

T not 

sum sum 

> 

t1 t5 

Parent 2 

if 

G 

av 

< 

t2 

R and 

t1 

sum sum 

> 

t1 t5 

Child 1 

t3 

= 
max 

t4 

if 

S T not 

Child 2 

if 

G 

av 

< 

t2 t3 

= 
max 

t4 

and 

t1 

Parent 1 

R 

GP Tree Crossover 

Nuts and Bolts GP Design 
51 

Tree Crossover Details 
•  Crossover point in each 

parent is picked at random 
•  Conventional practices 

–  All nodes with equal 
probability 

–  leaf nodes chosen with 0.1 
probility and non-leaf with 
0.9 probability 

•  Probability of crossover 
–  Typically 0.9 

•  Maximum depth of child is a 
run parameter 
–  Typically ~ 15 
–  Can be size instead 

•  Two identical parents rarely 
produce offspring that are 
identical to them 

•  Tree-crossover produces 
great variations in offspring 
with respect to parents 

•  Crossover, in addition to 
preserving syntax, allows 
expressions to vary in 
length and structure (sub-
expression nesting) 

Nuts and Bolts GP Design 
52 

Crossover in PonyGP.py 
def subtree_crossover(parent1, parent2): 
    #TODO have X tries for finding crossover points 
    offspring = (Individual(parent1.genome), 
                Individual(parent2.genome)) 
    if random.random() < CROSSOVER_PROBABILITY: 
        node = random.choice(offspring[0].genome.depth_first(offspring[0].genome.root)) 
        if node.symbol in symbols.functions: 
            nodes = offspring[1].genome.depth_first(offspring[1].genome.root) 
            possible_nodes = [] 
            for _node in nodes: 
                if _node.symbol == node.symbol: 
                    possible_nodes.append(_node) 
            if possible_nodes: 
                _node = random.choice(possible_nodes) 
                node_parents = (node.parent, _node.parent) 
                node_copy = copy.copy(node) 
                node = _node 
                node.parent = node_parents[0] 
                _node = node 
                _node.parent = node_parents[1] 
 
    #TODO size checking 
    return offspring 

53 

GP Tree Mutation 
•  Often only crossover is used 
•  But crossover behaves often like macro-mutation 
•  Mutation can be better tuned to control the size of 

the change 
•  A few different versions 

Nuts and Bolts GP Design 
54 
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if 

G 

av 

< 

t2 t3 

= 
max 

t4 

and 

t1 

Parent 

R 
if 

G 

av 

< 

t2 t1 

= 
max 

t4 

and 

t1 

Mutant-subst 

R 

if 

G 

av 

< 

t2 t3 

= 

t4 

and 

t1 

Mutant-deletion 
R 

if 

G 

av 

< 

t2 

t3 

= 
max 

t4 

and 

t1 

Mutant-addition 
R 

max 

HVL-Mutation:  substitution, deletion, insertion 

Nuts and Bolts GP Design 
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Other Sorts of Tree Mutation 
•  Koza: 

–  Randomly remove a sub-tree and replace it 
–  Permute: mix up order of args to operator  
–  Edit: + 1 3 -> 4, and(t t) -> t 
–  Encapsulate: name a sub-tree, make it one node and allow 

re-use by others (protection from crossover) 
»  Developed into advanced GP concept known as  

§  Automatic module definition 
§  Automatically defined functions (ADFs) 

•  Make your own 
–  Could even be problem dependent (what does a subtree 

do? Change according to its behavior) 

Nuts and Bolts GP Design 
56 

Subtree Mutation in PonyGP.py 
def subtree_mutation(individual): 
    if random.random() < MUTATION_PROBABILITY: 
        #Pick node 
        node = 
random.choice(individual.genome.depth_first(individual.genome.root)) 
        #Clear children 
        node.children[:] = [] 
        node_depth = individual.genome.get_depth(node) 
        node.symbol = symbols.get_rnd_symbol(node_depth, MAX_DEPTH) 
        #Grow tree 
        if node.symbol in symbols.functions: 
            individual.genome.grow(node, node_depth, MAX_DEPTH) 
 
    return individual 

57 

Selection in GP 

•  Proceeds in same manner as evolutionary algorithm 
–  Same set of methods 
–  Conventionally use tournament selection 
–  Also see fitness proportional selection 
–  Cartesian genetic programming: 

»  One parent: generate 5 children by mutation 
»  Keep best of parents and children and repeat 

§  If parent fitness = child fitness, keep child 

58 
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Top Level GP Algorithm 

Nuts and Bolts GP Design - Summary 

Begin	

	
pop = random programs from a   set of operators and operands	

	
repeat	

	
 	
execute each program in pop with each set of inputs	

	
 	
measure each program’s fitness	

	
 	
repeat	

	
 	
 	
select 2 parents	

	
 	
 	
copy 2 offspring from parents	

	
 	
 	
 	
crossover	

	
 	
 	
 	
mutate	

	
 	
 	
add to new-pop	

	
 	
until pop-size	

	
pop = new-pop	

	
until max-generation 	

	
 	
or	

	
        adequate program found	


End	


Grow or Full!

• Tournament selection!
• Fitness proportional selection!
• Your favorite selection!

Ramped-half-half!

Prepare input data!
Designate solution!
Define error between actual!
and expected!

Sub-tree crossover!• HVL-mutate!
• Subtree subst!
• Permute!
• Edit!
• Your own!

Max-init-tree-height!

Prob to crossover!

Max-tree-height!

Mutation probs!

Tournament size!

Leaf:node bias!

59 

GP Preparatory Steps 
1.  Decide upon functions and terminals 

–  Terminals bind to decision variables in problem 
–  Defines the search space 

2.  Set up the fitness function 
–  Translation of problem goal to GP goal 
–  Minimization of error between desired and evolved 
–  Maximization of a problem based score 

3.  Decide upon run parameters 
–  Population size is most important 

»  Budget driven or resource driven 
–  GP is robust to many other parameter choices 

4.  Determine a halt criteria and result to be returned 
–  Maximum number of fitness evaluations 
–  Time 
–  Minimum acceptable error 
–  Good enough solution (satisficing) 

Nuts and Bolts GP Design 
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GP Parameters 
•  Population size 
•  Number of generations 
•  Max-height of trees on 

random initialization 
–  Typically 6 

•  Probability of crossover 
–  Higher than mutation 
–  0.9  
–  Rest of offspring are copied 

•  Probability of mutation 
–  Probabilities of addition, 

deletion and insertion 

•  Population initialization 
method 
–  Ramped-half-half 
–  All full 
–  All non-full 

•  Selection method 
–  Elitism? 

•  Termination criteria 
•  Fitness function  
•  what is used as “solution” 

of expression 

Nuts and Bolts GP Design 
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Run Level GP Flowchart 

Nuts and Bolts GP Design 
From http://www.genetic-programming.com/gpflowchart.html  
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ponyGP.py from command line 
if __name__ == '__main__': 
    #TOTO too many global variables 
    ARITIES = {"x[0]": 0, "x[1]": 0, "0.1": 0, "1.0": 0, "5.0": 0, "*": 2, 
               "+": 2, "-": 2} 
    VARIABLE_PREFIX = 'x' 
    POPULATION_SIZE = 4 
    MAX_DEPTH = 4 
    DEFAULT_FITNESS = -10000 
    GENERATIONS = 2 
    ELITE_SIZE = 1 
    SEED = 0 
    CROSSOVER_PROBABILITY = 0.5 
    MUTATION_PROBABILITY = 0.1 
    random.seed(SEED) 
    #TODO function showing how to compile the code and then run instead of interpret 
    symbols = Symbols(ARITIES, VARIABLE_PREFIX) 
    fitness_cases = [ 
        [0, 0], 
        [1, 1] 
        ] 
    targets = [0, 1] 
    fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_map) 
    main() 
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 ponyGP.py main() 
def main(): 
    #Create population 
    individuals = initialize_population() 
    best_ever = search_loop(individuals) 
    print("Best train:" + str(best_ever)) 
    #Test on out-of-sample data 
    fitness_cases = [ 
        [0, 1], 
        [1, 1] 
        ] 
    targets = [1, 1] 
    fitness_function = 
Symbolic_Regression(fitness_cases, targets, 
symbols.variable_map) 
    fitness_function(best_ever) 
    print("Best test:" + str(best_ever)) 

64 

Agenda Checkpoint 
Nuts and Bolts GP Design 
•  How we create random GP expressions 
•  How we create a diverse population of expressions 
•  A general procedure for fitness function design 
•  How we mutate and crossover expressions 
•  Selection 
•  Put it together: one algorithm, at run level 

Agenda 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 
3.  Resources and reference material  

Agenda 
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Reference Material 
Where to identify conference and journal material 
•  Genetic Programming Bibiliography 

–  http://www.cs.bham.ac.uk/~wbl/biblio/ 
Online Material 
•  ACM digital library: http://portal.acm.org/  

–  GECCO conferences 
–  GP conferences (pre GECCO),  

•  Evolutionary Computation Journal (MIT Press) 
•  IEEE digital library: http://www.computer.org/portal/

web/csdl/home  
–  Congress on Evolutionary Computation (CEC) 
–  IEEE Transactions on Evolutionary Computation 

•  Springer digital library: http://www.springerlink.com/ 
–  European Conference on Genetic Programming: “EuroGP” 
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GP Software 
Commonly used in published research (and somewhat active): 
•  Heuristic lab (using grammar guided GP) , GEVA (UCD) 
•  EPOCHx 
•  DEAP, JGAP 
•  Java: ECJ, TinyGP,  
•  Matlab: GPLab, GPTips 
•  C/C++:  MicroGP  
•  Python: DEAP, PyEvolve 
•  .Net: Aforge.NET 
Others 
•  http://www.epochx.org/index.php 

Strongly typed GP, Grammatical evolution, etc 
Lawrence Beadle and Colin G Johnson  

•  http://www.tc33.org/genetic-programming/genetic-
programming-software-comparison/ 
–  Dated Feb 15, 2011 
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Genetic Programming Benchmarks 

Genetic programming needs better benchmarks 
–  James McDermott, David R. White, Sean Luke, Luca Manzoni, Mauro 

Castelli, Leonardo Vanneschi, Wojciech Ja ́skowski, Krzysztof Krawiec, 
Robin Harper, Kenneth De Jong, and Una-May O’Reilly. 

–  In Proceedings of GECCO 2012, Philadelphia, 2012. ACM.  

•  Related benchmarks wiki 
–  http://GPBenchmarks.org 
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Software Packages for Symbolic Regression 

No Source code available 
•  Datamodeler - mathematica, Evolved Analytics 
•  Eureqa II/ Formulize  - a software tool for detecting 

equations and hidden mathematical relationships in 
data 
–  http://creativemachines.cornell.edu/eureqa 
–  Plugins to Matlab, mathematica, Python 
–  Convenient format for data presentation 
–  Standalone or grid resource usage 
–  Windows, Linux or Mac 
–  http://www.nutonian.com/ for cloud version 

•  Discipulus™ 5 Genetic Programming Predictive 
Modelling 
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Reference Material - Books 
•  Genetic Programming, James McDermott and Una-May O'Reilly, In the 

Handbook of Computational Intelligence (forthcoming), Topic Editors: Dr. F. 
Neumann and Dr. K Witt, Editors in Chief Prof. Janusz Kacprzyk and Prof. 
Witold Pedrycz. 

•  Essentials of Metaheuristics, Sean Luke, 2010 
•  Genetic Programming: From Theory to Practice 

–  10 years of workshop proceedings, on SpringerLink, edited 
•  A Field Guide to Genetic Programming, Poli, Langdon, McPhee, 2008, Lulu 

and online digitally 
•  Advances in Genetic Programming 

–  3 years, each in different volume, edited 
•  John R. Koza 

–  Genetic Programming: On the Programming of Computers by Means of Natural Selection, 1992 (MIT 
Press) 

–  Genetic Programming II: Automatic Discovery of Reusable Programs, 1994 (MIT Press) 
–  Genetic Programming III: Darwinian Invention and Problem Solving, 1999 with Forrest H Bennett III, 

David Andre, and Martin A. Keane, (Morgan Kaufmann) 
–  Genetic Programming IV: Routine Human-Competitive Machine Intelligence, 2003 with Martin A. 

Keane, Matthew J. Streeter, William Mydlowec, Jessen Yu, and Guido Lanza 
•  Linear genetic programming, Markus Brameier, Wolfgang Banzhaf, 

Springer (2007) 
•  Genetic Programming: An Introduction, Banzhaf, Nordin, Keller, Francone, 

1997 (Morgan Kaufmann) 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 
3.  Resources and reference material  
4.  Examples 

Agenda 

Simple Symbolic Regression 
•  Given a set of independent 

decision variables and 
corresponding values for a 
dependent variable 

•  Want: a model that predicts the 
dependent variable 

–  Eg: linear model with numerical 
coefficients 

»  Y= aX1 + bX2 + c(X1X2) 
–  Eg: non-linear model 

»   y= a x12 + bx23 
–  Prediction accuracy: minimum 

error between model prediction and 
actual samples 

•  Usually: designer provides a model 
and a regression (ordinary least 
squares, Fourier series) 
determines coefficients  

•  With genetic programming, the 
model (structure) and the 
coefficients can be learned 

•  Example: y=f(x) 
•  Domain of x [-1.0,+1.0] 
•  Choose the operands 

–  X 
•  Choose the operators 

–  +, - , *, / (protected) 
–  Maybe also sin, cos, exp, log 

(protected) 
•  Fitness function: sum of absolute 

error between yi, and expression’s 
return values 

•  Prepare 20 points for test cases 
•  Test problem: 

–  Y=x4 + x3 + x2 + x 
–  GP can create coefficients (x/x div x

+x = 1/2) but… 

GP Examples 
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Symbolic Regression with Numeric 
Coefficients:Ephemeral Random Constants 

•  New Test problem:  

–  Y=3x4 + 10x3 + 2x2 + 3x 

•  requires constant creation 
•  Ephemeral random constants 

provide GP with numerical 
solution components 

•  Provide ERC set 
 
•  Include R among the operands. 

When individual is to be 
randomly created and R is 
drawn, one of the elements in 
R becomes the new operand. 

 

•  GP only has the constants 
that are randomly drawn in 
the initial population 

•  Constants could be lost 
through the selection 
process (no expression with 
a constant survives 
reproduction) 

•  But, GP has more primitive 
material to work with 

•  It works…partially 
•  Issue with size of constants, 

coordination of model and 
coefficient search, as a 
“clump” of numbers grows, 
it is more vulnerable to 
crossover disruption  

GP Examples 

€ 

R = {−10,−9,−8,...0...8,9,10}
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The Block Stacking Problem 

Block Stacking Example 

Goal: a plan to rearrange the current state of stack and table!
       into the goal stack!

Current State"

A"

C"

F"
E"

D" B"

stack!

table!

table 

Goal Stack"

A"

B"
C"

D"

E"
F"

stack!

Koza-92 
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Block Stacking Problem: Primitives 
•  State (updated via side-

effects) 
–  *currentStack* 
–  *currentTable* 

•  The operands 
–  Each block by label 

•  Operators returning a block 
based on current stack 
–  top-block  
–  next-needed  
–  top-correct 

•  Block Move Operators 
return boolean 
–  Return nil if they do 

nothing, t otherwise 
–  Update *currentTable* and 

*currentStack* 
–  to-stack(block) 
–  to-table(block) 

•  Sequence Operator returns 
boolean 
–  Do-until(action, test) 

»  Macro, iteration timeouts 
»  Returns t if test satisified, 

nil if timed out  
•  Boolean operators 

–  NOT(a), EQ(a b) 

Block Stacking Example 
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Random Block Stacking Expressions 
•  eq(to-table(top-block) next-needed) 

–  Moves top block to table and returns nil 
•  to-stack(top-block) 

–  Does nothing 
•  eq(to-stack(next-needed)  

   eq (to-stack(next-needed) to-stack(next-needed))) 
–  Moves next-needed block from table to stack 3 times 

•  do-until(to-stack(next-needed) 
             (not(next-needed)) 

 - completes existing stack correctly (but existing 
stack could be wrong) 

Block Stacking Example 
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Block Stacking Fitness Cases 

•  different initial stack and table 
configurations (Koza - 166) 
–  stack is correct but not complete 
–  top of stack is incorrect and stack is incomplete 
–  Stack is complete with incorrect blocks 

•  Each correct stack at end of expression 
evaluation scores 1 “hit” 

•  fitness is number of hits (out of 166) 

Block Stacking Example 
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Evolved Solutions to Block Stacking 
eq(do-until(to-table(top-block) (not top-block)) 
   do-until(to-stack(next-needed) (not next-needed) 

  
–  first do-until removes all blocks from stack until it is empty and top-block 

returns nil 
–  second do-until puts blocks on stacks correctly until stack is correct and 

next-needed returns nil 
–  eq is irrelevant boolean test but acts as connective 
–  wasteful in movements whenever stack is correct 

•  Add a fitness factor for number of block movements 
do-until(eq (do-until (to-table(top-block)  
                        (eq top-block top-correct)) 
              (do-until (to-stack(next-needed) (not next-needed)) 
          (not next-needed) 

–  Moves top block of stack to table until stack is correct 
–  Moves next needed block from table to stack 
–  Eq is again a connective, outer do-until is harmless, no-op 

        
 
 Block Stacking Example 
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More Examples of Genetic Programming 
•  Evolve priority functions 

that allow a compiler to 
heuristically choose 
between alternatives in 
hyper-block allocation 

•  Evolve a model that 
predicts, based on past 
market values, whether a 
stock’s value will increase, 
decrease or stay the same 
–  Measure-correlate-predict a 

wind resource 
–  ICU clinical forecasting 

»  FlexGP 

•  Flavor design 
–  Model each panelist 

»  Advanced methods for 
panelist clustering, 
bootstrapped flavor 
optimization 

•  Community Benchmarks 
–  Artifical Ant 
–  Boolean Multiplexor 

•  FlexGP 
–  Cloud scale, flexibly 

factored and scaled GP  

GP Examples 
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Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 
3.  Resources and reference material  
4.  Examples 
5.  Deeper discussion (time permitting) 

Agenda 
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How Does it Manage to Work 
•  Exploitation and exploration 

–  Selection 
–  Crossover 

•  Selection 
–  In the valley of the blind, 

the one-eyed man is king 
•  Crossover: combining 
•  Koza’s description 

–  Identification of sub-trees 
as sub-solutions 

–  Crossover unites sub-
solutions 

•  For simpler problems it 
does work 

•  Current theory and 
empirical research have 
revealed more complicated 
dynamics 

Time Permitting 
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Why are we still here?  
Issues and Challenges 

•  Trees use up a lot of 
memory 

•  Trees take a long time 
to execute 
–  Change the language for 

expressions 
»  C, Java 

–  Pre-compile the 
expressions, PDGP 
(Poli) 

–  Store one big tree and 
mark each pop member 
as part of it 

»  Compute subtrees for 
different inputs, store 
and reuse 

•  Bloat: Solutions are full of 
sub-expressions that may 
never execute or that 
execute and make no 
difference 

•  Operator and operand sets 
are so large, population is 
so big, takes too long to run 

•  Runs “converge” to a non-
changing best fitness 
–  No progress in solution 

improvement before a good 
enough solution is found 

Time Permitting 
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Runs “converge”: Evolvability 
•  Is an expression tree ideal for evolvability? 
•  Trees do not align, not mixing likes with likes as we 

would do in genetic algorithm 
•  Biologically this is called “non-homologous” 
•  One-point crossover 

–  By Poli & Langdon  
–  Theoretically a bit more tractable 
–  Not commonly used 
–  Still not same kind of genetic material being swapped 

 

Time Permitting 
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Evolvability - modularity and reuse 
•  Expression tree must be big 

to express reuse and 
modularity 

•  Is there a better way to 
design the genome to allow 
modularity to more easily 
evolve? 

Time Permitting 
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Evolvability: modularity and reuse 

Time Permitting 
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Register Machine Genotype 
•  linear genotype, varying length, direct data 

Time Permitting 

CPU Registers 

A B C 
122 88 56 

genotype b = b+c 
a = a xor c 
c = b*c 
c = c-a 

P1 

P2 

b=… 

a=… 

c=… 

c=… 

b=… 

a=… 

c=… 

c=… 

1 
2 
3 

5 
4 

6 
7 
8 

3 

4 
5 
6 

1 
2 

7 
8 

C1 C2 

Crossover 
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Register Machine Advantages 
•  Easier on memory and crossover handling 
•  Supports aligned “homologous” crossover 
•  Registers can act as poor-man’s modules 
•  The primitive level of expressions allows for 

–  Potentially more easily identifiable building blocks 
–  Potentially less context dependent building blocks 

•  The register level instructions can be further 
represented as machine instructions (bits) and run 
native on the processor 
–  AIM-GP (Auto Induction of Machine Code GP) 
–  Intel or PPC or PIC, java byte code, 
–  Experience with RISC or CISC architectures  
–  Patent number: 5946673, DISCIPLUS system 

Time Permitting 
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Cartesian Genetic Programming 

Time Permitting 

•  Developer: Julian Miller 
•  operators and operands are 

nodes and data flow is 
described by genome 

•  Fixed length genome but 
variable length phenome 
–  Integers in blocks 
–  For each block, integers to 

name inputs and operator 
•  Unexpressed genetic 

material can be turned on 
later 

•  No bloat observed (plus 
nodes are upper bounded 
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Dealing with Bloat 
•  Why does it occur? 

–  Crossover is destructive 
–  Effective fitness is selected for 

•  Effective fitness 
–  Not just my fitness but the 

fitness of my offspring 
•  Approaches 

–  Avoid - change genome 
structure 

–  Remove: Koza’s edit operation 
–  Pareto GP 
–  Penalize: parsimony pressure 

»  Fitness = 
A(perf) + (1-a)(complexity 

•  “Operator equalisation for bloat free genetic 
programming and a survey of bloat control 
methods”, by Sara Silva and Stephen Dignum 
and Leonardo Vanneschi 

–  GPEM Vol 13, #2, 2012 

Examples:  
•  (not (not x)) 
•  (+ x 0) 
•  (* x 1) 
•  (Move left move-right) 
•  If (2=1) action 

No difference to fitness (defn 
by Banzhaf, Nordin and 
Keller) 

Can be local or global 
 

Time Permitting 
92 

248



Agenda 
Context: Evolutionary Computation and Evolutionary 

Algorithms 
1.  GP is the genetic evolution of executable 

expressions 
2.  Nuts and Bolts Descriptions of Algorithm 

Components 
3.  Resources and reference material  
4.  Examples 
5.  Deeper discussion (time permitting) 

Agenda 
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The End 
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PonyGP.py search_loop From command line 
if __name__ == '__main__': 
    #TOTO too many global variables 
    ARITIES = {"x[0]": 0, "x[1]": 0, "0.1": 0, "1.0": 0, "5.0": 0, "*": 2, 
               "+": 2, "-": 2} 
    VARIABLE_PREFIX = 'x' 
    POPULATION_SIZE = 4 
    MAX_DEPTH = 4 
    DEFAULT_FITNESS = -10000 
    GENERATIONS = 2 
    ELITE_SIZE = 1 
    SEED = 0 
    CROSSOVER_PROBABILITY = 0.5 
    MUTATION_PROBABILITY = 0.1 
    random.seed(SEED) 
    #TODO function showing how to compile the code and then run instead of interpret 
    symbols = Symbols(ARITIES, VARIABLE_PREFIX) 
    fitness_cases = [ 
        [0, 0], 
        [1, 1] 
        ] 
    targets = [0, 1] 
    fitness_function = Symbolic_Regression(fitness_cases, targets, symbols.variable_map) 
    main() 
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main() 
def main(): 
    #Create population 
    individuals = initialize_population() 
    best_ever = search_loop(individuals) 
    print("Best train:" + str(best_ever)) 
    #Test on out-of-sample data 
    fitness_cases = [ 
        [0, 1], 
        [1, 1] 
        ] 
    targets = [1, 1] 
    fitness_function = 
Symbolic_Regression(fitness_cases, targets, 
symbols.variable_map) 
    fitness_function(best_ever) 
    print("Best test:" + str(best_ever)) 
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