

GECCO'14, July 12–16, 2014, Vancouver, BC, Canada. ACM 978-1-4503-2662-9/14/07.

Instructor

Thomas Bäck is full Professor of Computer Science at the Leiden Institute of Advanced Computer Science (LIACS) at Leiden University.

Thomas Bäck has authored or co-authored more than 250 publications on evolutionary computation, as well as a book on evolutionary algorithms, entitled Evolutionary Algorithms: Theory and Practice.

He is editorial board member and associate editor of a number of journals on evolutionary and natural computation, and has served as program chair for the major conferences in evolutionary computation. He received the best dissertation award from the Gesellschaft für Informatik (GI) in 1995 and is an elected fellow of the International Society for Genetic and Evolutionary Computation for his contributions to the field.

From 2000 - 2009, Thomas was CEO of NuTech Solutions GmbH and CTO of NuTech Solutions, Inc., until November 2009. Thomas has ample experience in working with Fortune 1000 customers such as Air Liquide, BMW Group, Beiersdorf, Daimler, Corning, Inc., Ford of Europe, Honda, Johnson & Johnson, P&G, Symrise, Siemens, Unilever, and others.

He is co-editor of the Handbook of Evolutionary Computation and the Handbook of Natural Computing (Springer, 2012). In 2013, he published the book Contemporary Evolution Strategies (with C. Foussette and P. Krause).

Home page: www.natcomp.liacs.nl

Abstract

This tutorial gives a basic introduction to evolution strategies, a class of evolutionary algorithms. Key features such as mutation, recombination and selection operators are explained, and specifically the concept of self-adaptation of strategy parameters is introduced.

All algorithmic concepts are explained to a level of detail such that an implementation of basic evolution strategies is possible.

In addition, the tutorial also presents a brief taxonomy of contemporary evolution strategy variants, including e.g. the CMA-ES and variations thereof, and compares their performance for a small number of function evalutions - which represents many of today's practical application cases.

Some guidelines for utilization as well as some application examples are also given.

Agenda

- Introduction: Optimization and EAs
- Evolution Strategies
- Examples

Pros and Cons: Correlated Mutations

- Advantages:
 - Individual scaling of object variables
 - A Rotation of coordinate system possible
 - Increased global convergence reliability
- Disadvantages:
 - Much slower convergence
 - Effort for mutations scales quadratically

46

Self-adaptation very inefficient

Operators: Mutation – Addendum • Generating N(0,1)-distributed rnd numbers? $\begin{aligned}
u = 2 \cdot U[0,1) - 1 \\
w = u^2 + v^2 \\
x_1 = u \cdot \sqrt{\frac{-2\log(w)}{w}} \\
x_2 = v \cdot \sqrt{\frac{-2\log(w)}{w}}
\end{aligned}$ If w > 1

Parent 1

Offspring

Parent 2

50

Parent 2

Parent µ

52

Offspring

Empirical Investigation

- Performance assessment
 - Using non-parametric tests (Studen-t) significant differences (p < 0.05) of FCE-values of two competing algorithms are counted as a "win" for the better algorithm
 - Difference peak performance and average performance
 - peak performance: For each k=5 runs, only the best is used for the assessment

78

- average performance: Considers all FCE
- · Accumulated rank orders
 - For each test function class
 - For all test functions

Empirical InvestigationResults: Ranks for all test functions

ES	n :	= 2	n :	= 5	<i>n</i> =	= 10	<i>n</i> =	= 20	<i>n</i> =	= 40	<i>n</i> =	= 100
	р	a	р	a	p	а	p	a	р	а	p	а
(1+1)-ES	8	9	9	9	7	8	6	7	8	9	9	7
(μ, λ) -MSC-ES	10	7	13	11	13	13	13	13	11	13	11	-11
DR1	5	6	6	4	6	5	9	6	7	5	10	9
DR2	6	10	5	6	4	4	4	4	3	3	3	3
DR3	12	14	12	13	12	12	11	12	12	12	12	12
(μ_W, λ) -CMA-ES	3	4	2	2	2	3	2	2	2	2	2	2
LS-CMA-ES	11	12	11	11	10	11	10	10	10	10	5	5
(1+1)-Cholesky-CMA-ES	7	10	7	10	9	9	7	7	9	8	7	6
Active-CMA-ES	1	2	1	1	1	1	1	1	1	1	1	1
(μ, λ) -CMSA-ES	13	13	7	8	8	6	5	5	4	3	4	4
sep-CMA-ES	14	5	14	14	14	14	14	14	14	14	14	14
(1+1)-Active-CMA-ES	2	8	4	7	5	7	7	9	5	7	8	7
$(1, 4_m^s)$ -CMA-ES	4	3	2	3	3	2	3	3	6	6	6	10
xNES	9	1	10	5	11	9	12	11	13	11	13	13

Tabelle 2: Aggregierte Rangfolgen über alle 24 Testfunktionen mit Zielkosten 100 · n für die Dimensionen $n \in \{2, 5, 10, 20, 40, 100\}$. Die Spalten p zeigen die Rangfolge für die peak performance und die Spalten a stellen die Rangfolge für die average performance dar. Rang 1 ist das beste, Rang 14 das schlechteste ES-Verfahren.

Summary

- Empirical investigation for very small number of function evaluations
 - $(\mu_w, \lambda)\text{-CMA-ES}$ with active covariance matrix adaptation is clear winner
 - For 25n and 50n function evaluations, (1+1) are useful as well

86

Mixed-Integer Evolution Strategy Generalized optimization problem:

85

IKB	: Previe	ous E	Desig	gns			
# Variables	Characteristics	HIC	CG	Left foot load	Right foot load	P Combined	
4	Unconstrained	576,324	44,880	4935	3504	12,393	
5	Unconstrained	384,389	41,460	4707	4704	8,758	
9	Unconstrained	292,354	38,298	5573	5498	6,951	
10	Constrained	305,900	39,042	6815	6850	7,289	
		ţ					Ì

B: Probl	em Statem	ent		
jective: Min Ptotal	Subject to:	Left F Right F	emur load <= emur load <=	7000 7000
Design Variable	Description	Base Design 1	Base Design 2	GA (Yan Fu)
dx	IKB center offset x	0	0	0,01
dz	IKB center offset y	0	0	-0,01
rcdex	KB venting area ratio	1	1	2
massrat	KB mass inflow ratio	1	1	1,5
rcdexd	DB venting area ratio	1	1	2,5
Dmassratf	DB high output mass inflow ratio	1	1	1,1
Dmassratl	DB low output mass inflow ratio	1	1	1
dbfire	DB firing time	0	0	-0,003
dstraprat	DB strap length ratio	1	1	1,5
emr	Load of load limiter (N)	3000	3000	2000
Performance Response	Description			
NCAP_HIC_50	HIC	590	555.711	305,9
NCAP_CG_50	CG	47	47.133	39,04
NCAP_FMLL_50	Left foot load	760	6079	6815
NCAR EMPL 50	Right foot load	900	5766	6850
NOAF_FINITE_50				

Ô

Business Issues

- Supply Chain Optimization
- Scheduling & Timetabling
- Product Development, R&D
- Management Decision Making, e.g., project portfolio optimization
- Optimization of Marketing Strategies; Channel allocation
- Multicriteria Optimization (cost / quality)
- … And many others

Leiden Institute of Advanced Computer Science (LIACS)

- See <u>www.liacs.nl</u> and <u>http://natcomp.liacs.nl</u>
- Masters in
 - Comp. Science
 - ICT in Business
 - Media Technology
- Elected "Best Comp. Sci. Study" by students.
- Excellent job opportunities for our students.
- Research education with an eye on business.

113

Literature

- H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.
- I. Rechenberg: *Evolutionsstrategie 94*, frommannholzboog, Stuttgart, 1994.
- Th. Bäck: Evolutionary Algorithms in Theory and Practice, Oxford University Press, NY, 1996.
- Th. Bäck, D.B. Fogel, Z. Michalewicz (Hrsg.): Handbook of Evolutionary Computation, Vols. 1,2, Institute of Physics Publishing, 2000.
- Th. Bäck, C. Foussette, P. Krause: Contemporary Evolution Strategies, Springer, Berlin, 2013.