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Abstract

This tutorial gives a basic introduction to evolution strategies, a 

class of evolutionary algorithms.  Key features such as mutation, 

recombination and selection operators are explained, and

specifically the concept of self-adaptation of strategy

parameters is introduced. 

All algorithmic concepts are explained to a level of detail such 

that an implementation of basic evolution strategies is possible.

In addition, the tutorial also presents a brief taxonomy of

contemporary evolution strategy variants, including e.g. the

CMA-ES and variations thereof, and compares their performance

for a small number of function evalutions – which represents

many of today‘s practical application cases.

Some guidelines for utilization as well as some application

examples are also given.
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Agenda

�Introduction: Optimization and EAs

�Evolution Strategies

�Examples
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A True Story …

During my PhD

� Ran artificial test 
problems

� n=30 maximum 
dimensionality

� Evaluation took „no“ 
time

� No constraints

� Thought these were 

difficult

Now

� Real-world problems

� n=150, n=10,000

� Evaluation can take 20 

hours

� 50 nonlinear constraints

� Tip of the iceberg

5

Introduction

�Modeling

�Simulation

�Optimization

! ! ! ! ! !???

! ! ! ???! ! !

??? ! ! !! ! !

Input: Known (measured)
Output: Known (measured)

Interrelation: Unknown

Input: Will be given

Model: Already exists

How is the result for the input?

Objective: Will be given

How (with which parameter settings)

to achieve this objective?

6

Simulation vs. Optimization 

Simulator

… what happens if?

Result

Trial & Error

Simulator

... how do I achieve the best result?

Optimal

Result

Maximization / Minimization
If so, multiple objectives

Optimizer

7

Introduction:

Optimization
Evolutionary Algorithms

8
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Optimization

� f : objective function 

• High-dimensional

• Non-linear, multimodal

• Discontinuous, noisy, dynamic

� M ⊆ M1 × M2 ×...× Mn heterogeneous

� Restrictions possible over  

� Good local, robust optimum desired

� Realistic landscapes are like that! Global Minimum

Local, robust 

optimum

9

Dynamic Optimization

�Dynamic Function

�30-dimensional

�3D-Projection

10

Classification of Optimization Algorithms

� Direct optimization algorithm: 
Evolutionary Algorithms

� First order optimization algorithm: 

e.g., gradient method

� Second order optimization algorithm: 

e.g., Newton method

11

Iterative Optimization Methods

�General

description:

Actual Point

New Point

Directional vector

Step size (scalar)

1+tx
v

tx
v

tt vs
v

⋅

1x

2x

3x
At every Iteration:

Choose direction

Determine step size

Direction:

Gradient

Random

Step size:

1-dim. optimization

Random

Self-adaptive
12
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Global convergence with probability one:

General, but for practical purposes useless

Convergence velocity:

Local analysis only, specific (convex) functions

1))(*Pr(lim =∈
∞→

tPx
t

v

)))(())1((( maxmax tPftPfE −+=ϕ

The Fundamental Challenge

13

Global convergence (with probability 1):

General statement (holds for all functions)

Useless for practical situations:

Time plays a major role in practice

Not all objective functions are relevant in 

practice

1))(*Pr(lim =∈
∞→

tPx
t

v

Theoretical Statements

14

x1

x2

f(x1,x2)

(x*1,x*2)

f(x*1,x*2)

An Infinite Number of Pathological Cases !

NFL-Theorem:

All optimization algorithms perform equally 

well iff performance is averaged over all 

possible optimization problems.

Fortunately: We are not Interested in „all 
possible problems“

15

Convergence velocity:

Very specific statements 

Convex objective functions

Describes convergence in local optima

Very extensive analysis for Evolution 

Strategies

)))(())1((( maxmax tPftPfE −+=ϕ

Theoretical Statements

16
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Evolution Strategies

17

Model-Optimization-Action

Evaluation

Optimizer

Business 
Process Model

Simulation

215
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Evolutionary Algorithms Taxonomy

Evolutionary Algorithms

Evolution Strategies Genetic Algorithms Other

Evolutionary Progr.

Differential Evol.

GP

PSO

EDA

Real-coded Gas

…

Mixed-integer capabilities

Emphasis on mutation

Self-adaptation

Small population sizes

Deterministic selection

Developed in Germany

Theory focused on 

convergence velocity

Discrete representations

Emphasis on crossover

Constant parameters

Larger population sizes

Probabilistic selection

Developed in USA

Theory focused on schema 

processing

19

Generalized Evolutionary Algorithm

t := 0;

initialize(P(t));

evaluate(P(t));

while not terminate do

P‘(t) := mating_selection(P(t));

P‘‘(t) := variation(P‘(t));

evaluate(P‘‘(t));

P(t+1) := environmental_selection(P‘‘(t) ∪∪∪∪ Q);

t := t+1;

od

20
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Optimization Creating Innovation

�Illustrative Example: Optimize Efficiency
• Initial:

• Evolution:

�32% Improvement in Efficiency !

21

Nozzle Experiment (I)

collection of conical nozzle parts

device for clamping nozzle parts

22

Nozzle Experiment (II)

Hans-Paul Schwefel 

while changing nozzle parts

23

Nozzle Experiment (III)

steam plant / experimental setup

24
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Nozzle Experiment (IV)

the nozzle in operation …

… while measuring degree of efficiency

25 26

The Simple (1+1)-ES

26

Evolution Strategy – Basics 

�Mostly real-valued search space IRn

• also mixed-integer, discrete spaces

�Emphasis on mutation

• n-dimensional normal distribution

• expectation zero

�Different recombination operators

�Deterministic selection

• (µ, λ)-selection: Deterioration possible

• (µ+λ)-selection: Only accepts improvements

�λ >> µ, i.e.: Creation of offspring surplus

�Self-adaptation of strategy parameters.

27

Representation of search points 

)),,...,(( 1 σnxxa =
v

),...,( 1 nxxa =
v

Simple ES with 1/5 success rule:

Exogenous adaptation of step size σ

Mutation: N(0, σ)

Self-adaptive ES with single step size:

One σ controls mutation for all xi

Mutation: N(0, σ)

28
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Representation of search points

)),...,(),,...,(( 11 nnxxa σσ=
v

)),...,(),,...,(),,...,(( 2/)1(111 −= nnnnxxa αασσ
v

Self-adaptive ES with individual step sizes:

One individual σi per xi

Mutation: Ni(0, σi)

Self-adaptive ES with correlated mutation:

Individual step sizes 

One correlation angle per coordinate pair

Mutation according to covariance matrix: N(0, C)

29

Evolution Strategy:

Algorithms
Mutation

30

Operators: Mutation – one s

)1,0(

))1,0(exp(

)),,...,((

)),,...,((

0

1

1

iii
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n
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xxa

xxa

⋅′+=′

⋅⋅=′

′′′=′

=

σ

τσσ

σ

σ
v

v

Self-adaptive ES with one step size:

One σ controls mutation for all xi

Mutation: N(0, σ)
Individual before mutation

Individual after mutation

1.: Mutation of step sizes

2.: Mutation of objective variables

Here the new σσσσ‘ is used!

31

Operators: Mutation – one σ

n

1
0 =τ

Thereby τ0 is the so-called learning rate

Affects the speed of the σ-Adaptation

τ0 bigger:   faster but more imprecise

τ0 smaller: slower but more precise

How to choose τ0?

According to recommendation of Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

32
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Operators: Mutation – one σ

Position of parents (here: 5)

Offspring of parent lies on 

the hyper sphere (for n > 10);

Position is uniformly distributed

Contour lines of 

objective function

33

Pros and Cons: One σ

Advantages:

Simple adaptation mechanism

Self-adaptation usually fast and precise

Disadvantages:

Bad adaptation in case of complicated 

contour lines

Bad adaptation in case of very differently 

scaled object variables 

-100 < xi < 100 and e.g. -1 < xj < 1

34

Operators: Mutation – individual σi

)1,0(

))1,0()1,0(exp(

)),...,(),,...,((

)),...,(),,...,((

11
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⋅+⋅′⋅=′

′′′′=′

=

σ

ττσσ

σσ

σσ
v

v

Self-adaptive ES with individual step sizes:

One σi per xi

Mutation: Ni(0, σi) Individual before Mutation

Individual after Mutation

1.: Mutation of

individual step sizes

2.: Mutation of object variables

The new individual σσσσi‘ are used here!
35

Operators: Mutation – individual σi

nn 2

1

2

1
==′ ττ

τ, τ‘ are learning rates, again

τ‘: Global learning rate

N(0,1): Only one realisation

τ: local learning rate

Ni(0,1): n realisations

Suggested by Schwefel*:

*H.-P. Schwefel: Evolution and Optimum Seeking, Wiley, NY, 1995.

36
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Position of parents (here: 5)

Offspring are located on the 

hyperellipsoid (für n > 10);

position equally distributed.

Contour lines

Operators: Mutation – individual σi

37

Pros and Cons: Individual σi

Advantages:

Individual scaling of object variables

Increased global convergence reliability

Disadvantages:

Slower convergence due to increased 

learning effort

No rotation of coordinate system possible

Required for badly conditioned objective function

38

Operators: Correlated Mutations
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αασσ
Individual before

mutationIndividual after 

mutation
1.: Mutation of

Individual step sizes

2.: Mutation of rotation angles

New convariance matrix C‘ used here!

Self-adaptive ES with correlated mutations:

Individual step sizes 

One rotation angle for each pair of coordinates

Mutation according to covariance matrix: N(0, C)

3.: Mutation of object variables

39

Operators: Correlated Mutations

)2tan()(
2

1 22

)( ijjijiijc ασσ −=≠

Interpretation of rotation angles αij

Mapping onto convariances according to

∆x1

∆x2

σ1

σ2
α12

40
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Operators: Correlated Mutation

)(2 jjjj sign απααπα ′⋅−′←′⇒>′

τ, τ‘, β are again learning rates

τ, τ‘ as before

β = 0,0873 (corresponds to 5 degree)

Out of boundary correction:

41

Correlated Mutations for ES

Position of parents (hier: 5)

Offspring is located on the 

Rotatable hyperellipsoid

(for n > 10); position equally

distributed.

Contour lines

42

Operators: Correlated Mutations

),0( CN ′
vv

How to create            ?

Multiplication of uncorrelated mutation vector 

with    n(n-1)/2 rotational matrices

Generates only feasible (positiv definite) 

correlation matrices
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Operators: Correlated Mutations

Structur of rotation matrix
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Operators: Correlated Mutations

Implementation of correlated mutations

nq := n(n-1)/2;

forforforfor i:=1 totototo n dodododo

σu[i] := σ[i] * Ni(0,1);

forforforfor k:=1 totototo n-1 dodododo

n1 := n-k;

n2 := n;

forforforfor i:=1 totototo k dodododo

d1     := σu[n1]; d2:= σu[n2];

σu[n2] := d1*sin(α[nq])+ d2*cos(α[nq]);

σu[n1] := d1*cos(α[nq])- d2*sin(α[nq]);

n2     := n2-1;

nq     := nq-1;

odododod

odododod

Generation of the uncorrelated 

mutation vector

Rotations

45

Pros and Cons: Correlated
Mutations

Advantages:

Individual scaling of object variables

Rotation of coordinate system possible

Increased global convergence reliability

Disadvantages:

Much slower convergence

Effort for mutations scales quadratically

Self-adaptation very inefficient

46

Operators: Mutation – Addendum 

Generating N(0,1)-distributed rnd numbers?

w
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Evolution Strategy:

Algorithms
Recombination

48
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Operators: Recombination

Only for µ > 1

Directly after Selection

Iteratively generates λ offspring:

forforforfor i:=1 totototo λ dodododo

choose recombinant r1 uniformly at random 

from parent_population;

choose recombinant r2 <> r1 uniformly at random

from parent population;

offspring := recombine(r1,r2);

add offspring to offspring_population;

odododod

49

Operators: Recombination

How does recombination work?

Discrete recombination:

Variable at position i will be copied at 

random (uniformly distr.) from parent 1 or 

parent 2, position i. Parent 1

Parent 2

Offspring

50

Operators: Recombination

Intermediate recombination:

Variable at position i is arithmetic mean of

Parent 1 and Parent 2, position i.

Parent 1

Parent 2

Offspring 

1,1r
x

1,2r
x

2/)( 1,1, 21 rr xx +
51

Operators: Recombination

Global discrete recombination:

Considers all parents Parent 1

Parent 2

Offspring 

…
Parent µµµµ

52
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Operators: Recombination

Global intermediary recombination:

Considers all parents Parent 1

Parent 2

Offspring 

…
Parent µµµµ

1,1r
x

1,2r
x

∑
=

µ

µ 1

1,

1

i

ri
x

1,µr
x
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Evolution Strategy

Algorithms
Selection

54

Operators: (µ+λ)-Selection

(µ+λ)-Selection means:

µ parents produce λ offspring by

(Recombination +)

Mutation

These µ+λ individuals will be considered together

The µ best out of µ+λ will be selected („survive“)

Deterministic selection

This method guarantees monotony

Deteriorations will never be accepted

= Actual solution candidate
= New solution candidate

Recombination may be left out

Mutation always exists!

55

Operators: (µ,λ)-Selection 

(µ,λ)-Selection means:

µ parents produce λ >> µ offspring by

(Recombination +)

Mutation

λ offspring will be considered alone

The µ best out of λ offspring will be selected

Deterministic selection

The method doesn‘t guarantee monotony

Deteriorations are possible

The best objective function value in generation t+1

may be worse than the best in generation t.

56
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Operators: Selection

�Example: (2,3)-Selection

�Example: (2+3)-Selection

Parents don‘t survive!
Parents don‘t survive …

… but a worse offspring.

… now this offspring survives.

57

Exception!

�Possible occurrences of selection

• (1+1)-ES: One parent, one offspring, 1/5-Rule

• (1,λ)-ES: One Parent, λ offspring

– Example: (1,10)-Strategy

– One step size / n self-adaptive step sizes 

– Mutative step size control

– Derandomized strategy

• (µ,λ)-ES: µ > 1 parents, λ > µ offspring

– Example: (2,15)-Strategy

– Includes recombination

– Can overcome local optima

• (µ+λ)-strategies: elitist strategies

Operators: Selection

58

Evolution Strategy:

Self adaptation of
step sizes

59

Self-adaptation

No deterministic step size control!

Rather: Evolution of step sizes

Biology: Repair enzymes, mutator-genes

Why should this work at all?

Indirect coupling: step sizes – progress

Good step sizes improve individuals

Bad ones make them worse

This yields an indirect step size selection

60

265



Self-adaptation: Example 

How can we test this at all?

Need to know optimal step size …

Only for very simple, convex objective functions

Here: Sphere model

Dynamic sphere model

Optimum locations changes occasionally

2*

1

)()( i

n

i

i xxxf −=∑
=

v

: Optimum
*

x
v
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Self-adaptation: Example
Objective function value

… and smallest step size

measured in the population

average …

Largest …

According to theory

of optimal step sizes

62

Self-adaptation

Self-adaptation of one step size

Perfect adaptation

Learning time for back adaptation 
proportional n

Proofs only for convex functions

Individual step sizes

Experiments by Schwefel

Correlated mutations

Adaptation much slower

63

Evolution Strategy:

Derandomization

64
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Derandomization

Goals:

Fast convergence speed

Fast step size adaptation

Precise step size adaptation

Compromise convergence velocity –
convergence reliability

Idea: Realizations of N(0, σ) are important!

Step sizes and realizations can be much 
different from each other

Accumulates information over time

65

Derandomized (1,λ)-ES

k

g
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ggg

N Zxx
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Current parent:        in generation g

Mutation (k=1,…,λ): Offspring k

Global step size in generation g

Individual step sizes in generation g

g
x
v

)1,0(~),...,( 1 NzzzZ in=
v

Selection: Choice of best offspring

g

N

g
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xx
vv

=+1 Best of λλλλ offspring

in generation g
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Derandomized (1,λ)-ES
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g

A

g

A ZcZcZ
vvv
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Accumulation of selected mutations:

The particular mutation vector,

which created the parent!

Also: weighted history of good mutation vectors!

Initialization:

Weight factor:
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n
c

1
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Derandomized (1,λ)-ES
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Step size adaptation: Norm of vector

Vector of absolute values
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Derandomized (1,λ)-ES

Explanations:

Normalization of average variations in case of 

missing selection (no bias):

Correction for small n: 1/(5n)

Learning rates:

c

c

−2

n

n

scal /1

/1

=

=

β

β
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Evolution Strategy:

Rules of thumb

70

Some Theory Highlights 

Convergence velocity:

For (1,λ)-strategies:

For (µ,λ)-strategis (discrete and intermediary

recombination):

n/1~ϕ

Problem dimensionality

λϕ ln~

Speedup by λλλλ is just logarithmic –

more processors are only to a 

limited extend useful to increase

ϕ.ϕ.ϕ.ϕ.

µ

λ
µϕ ln~

Genetic Repair Effect

of recombination!

Genetic Repair Effect

of recombination!

71

… 

For strategies with global intermediary 

recombination:

Good heuristic for (1,λ):

General: 

 
 2/

log34

λµ

λ

=

+= n

9.5219.03150

9.4118.82140

9.3018.60130

9.1818.36120

9.0518.10110

8.9117.82100

8.7517.5090

8.5717.1580

8.3716.7570

8.1416.2860

7.8715.7450

7.5315.0740

7.1014.2030

6.4912.9920

5.4510.9110

µλn

10=λ

µλ 7≈

72

268



And beyond CMA-ES …

�Many strategy variations since 1996

73

For an Overview:

74

�Bäck, Foussette, Krause: Contemporary 

Evolution Strategies. Natural Computing 

Series, Springer, 2013.

Empirical Investigation
�ES algorithms investigated

• 9 modern algorithms:

CMA-ES (with weighted recombination), Active-CMA-ES, 

(1+1)-Cholesky-CMA-ES, (1+1)-Active-CMA-ES, xNES, sep-

CMA-ES, (µ,λ)-CMSA-ES, LS-CMA-ES, (1,4m)-ES

• 5 „old“ algorithms

– (1+1)-ES

– (1, λ)-MSC-ES

– DR1 bzw. (1, λ)-ES with derandomized mutative step-size

– DR2 bzw. (1, λ)-ES with derandomized mutative step-size

control using accumulated information

– DR3 bzw. (1, λ)-GSA-ES (generating set adaptation)

• Matlab/Octave author‘s implementations for CMA-ES, 

Active-CMA-ES, (1,4m)-ES and xNES, own
implementations for the other ones

75

�Efficiency measures
� Expected Running Time (ERT)

• Horizontal viewpoint

• Recommended in BBOB

• Advantage due to quantitative 

comparison

• For runs with very small number

of function evaluations, choice of

fixed error ∆f* is problematic

� Fixed Cost Error (FCE)

• Vertical point of view

• Allows only for qualitative 

comparison

• Directly applicable for runs with very small number of function evaluations

76

Empirical Investigation
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Empirical Investigation

�BBOB Framework

• Framework with 24 test functions

– 3 unimodal, separable (e.g., Sphere)

– 7 unimodal, not separable (e.g., Bent Cigar)

– 2 multimodal, separable (e.g., Rastrigin)

– 12 multimodal, not separable (e.g., Schwefel)

• Saves convergence behavior as tuples

(number of function evaluations, ∆f*)

• Dimensionality n: 2, 5, 10, 20, 40 and 100

• 100 runs per setting, algorithm and test function, with
100n function evaluations

77

Empirical Investigation

�Performance assessment

• Using non-parametric tests (Studen-t) significant
differences (p < 0.05) of FCE-values of two competing

algorithms are counted as a „win“ for the better

algorithm

• Difference peak performance and average performance

– peak performance: For each k=5 runs, only the best is used for 

the assessment

– average performance: Considers all FCE

• Accumulated rank orders

– For each test function class

– For all test functions

78

Empirical Investigation

�Results: Ranks for all test functions

79

Empirical Investigation

�Results: For 100n function evaluations

• Active-CMA-ES wins, followed by (µ,λ)-CMA-ES

– „aktive“ covariance matrix adaptation very successful

• DR2 is a useful alternative to using (µ,λ)-CMA-ES for 
large n  (O(n²) instead of O(n³))

• sep-CMA-ES (linear complexity) performs worst

80
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Empirical Investigations
�Results: For 25n and 50n function evaluations

• Especially for unimodal functions, various (1+1) 
methods outperform CMA-ES

1: (1+1)-ES
2: (µ,λ)-MSC-ES
3: (µ,λ)-CMA-ES

4: Active-CMA-ES
5: (1,4m)-CMA-ES

6: xNES
7: DR1
8: DR2

9: DR3
A: (µ,λ)-CMSA-ES

B: (1+1)-Cholesky-CMA-ES
C: LS-CMA-ES
D: (1+1)-Active-CMA-ES

E: sep-CMA-ES

81

Empirical Investigations

�Results: For 25n function evaluations

• Für multimodal functions, Active-CMA-ES are (µ,λ)-
CMA-ES are clear winners

1: (1+1)-ES
2: (µ,λ)-MSC-ES
3: (µ,λ)-CMA-ES

4: Active-CMA-ES
5: (1,4m)-CMA-ES

6: xNES
7: DR1
8: DR2

9: DR3
A: (µ,λ)-CMSA-ES

B: (1+1)-Cholesky-CMA-ES
C: LS-CMA-ES
D: (1+1)-Active-CMA-ES

E: sep-CMA-ES
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Empirical Investigations
�Results: For 50n function evaluations

• Für multimodal functions, Active-CMA-ES are (µ,λ)-
CMA-ES are clear winners

1: (1+1)-ES
2: (µ,λ)-MSC-ES
3: (µ,λ)-CMA-ES

4: Active-CMA-ES
5: (1,4m)-CMA-ES

6: xNES
7: DR1
8: DR2

9: DR3
A: (µ,λ)-CMSA-ES

B: (1+1)-Cholesky-CMA-ES
C: LS-CMA-ES
D: (1+1)-Active-CMA-ES

E: sep-CMA-ES
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Empirical Investigations

�Results: For 100n function evaluations

• Für multimodal functions, Active-CMA-ES are (µ,λ)-
CMA-ES are clear winners

1: (1+1)-ES
2: (µ,λ)-MSC-ES
3: (µ,λ)-CMA-ES

4: Active-CMA-ES
5: (1,4m)-CMA-ES

6: xNES
7: DR1
8: DR2

9: DR3
A: (µ,λ)-CMSA-ES

B: (1+1)-Cholesky-CMA-ES
C: LS-CMA-ES
D: (1+1)-Active-CMA-ES

E: sep-CMA-ES
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Summary
�Empirical investigation for very small number of

function evaluations

• (µw,λ)-CMA-ES with active covariance matrix

adaptation is clear winner

• For 25n and 50n function evaluations, (1+1) are useful
as well

85

Mixed-Integer
Evolution Strategies

86

Mixed-Integer Evolution Strategy
�Generalized optimization problem:

87

Mixed-Integer ES: Mutation

Learning rates 
(global)

Learning rates 
(global)

Geometrical 
distribution

Mutation 
Probabilities
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Some Application Examples

Mostly Engineering Problems

89

Examples I: 
Inflatable Knee Bolster Optimization

Support plate

FEM #4

Initial position of knee bag model deployed knee bag (unit only)

Volume of 14L

Load distribution

plate

Tether

Support

plate

Vent hole

Load distribution

plate FEM #3

Tether FEM #5

Knee bag

FEM #2

Straps are defined in knee bag(FEM #2)

Low Cost ES: 0.677
GA (Ford): 0.72
Hooke Jeeves DoE: 0.88

Low Cost ES: 0.677
GA (Ford): 0.72
Hooke Jeeves DoE: 0.88
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IKB: Previous Designs

# Variables Characteristics HIC CG Left foot load Right foot load P Combined

4 Unconstrained 576,324 44,880 4935 3504 12,393

5 Unconstrained 384,389 41,460 4707 4704 8,758

9 Unconstrained 292,354 38,298 5573 5498 6,951

10 Constrained 305,900 39,042 6815 6850 7,289
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IKB: Problem Statement

� Objective: Min Ptotal                         Subject to: Left Femur load <= 7000

Right Femur load <= 7000

Design Variable Description Base Design 1 Base Design 2 GA (Yan Fu)

dx IKB center offset x 0 0 0,01

dz IKB center offset y 0 0 -0,01

rcdex KB venting area ratio 1 1 2

massrat KB mass inflow ratio 1 1 1,5

rcdexd DB venting area ratio 1 1 2,5

Dmassratf DB high output mass inflow ratio 1 1 1,1

Dmassratl DB low output mass inflow ratio 1 1 1

dbfire DB firing time 0 0 -0,003

dstraprat DB strap length ratio 1 1 1,5

emr Load of load limiter (N) 3000 3000 2000

Performance Response Description

NCAP_HIC_50 HIC 590 555.711 305,9

NCAP_CG_50 CG 47 47.133 39,04

NCAP_FMLL_50 Left foot load 760 6079 6815

NCAP_FMRL_50 Right foot load 900 5766 6850

P combined (Quality) 13.693 13.276 7,289

92
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IKB Results I: Hooke-Jeeves
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IKB Results II: (1+1)-ES
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Engineering Optimization

95

Safety Optimization – Pilot Study

� Aim: Identification of most appropriate 

Optimization Algorithm for realistic example!

� Optimizations for 3 test cases and 14 algorithms 

were performed (28 x 10 = 280 shots)

• Body MDO Crash / Statics / Dynamics

• MCO B-Pillar

• MCO Shape of Engine Mount

� NuTech’s ES performed significantly better than 

Monte-Carlo-scheme, GA, and Simulated 

Annealing

� Results confirmed by statistical hypothesis 

testing
96
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MDO Crash / Statics / Dynamics
�Minimization of body mass 

�Finite element mesh

• Crash ~ 130.000 elements

• NVH ~ 90.000 elements

� Independent parameters: 

Thickness of each unit: 109

�Constraints: 18

Algorithm Avg. reduction (kg) Max. reduction (kg) Min. reduction (kg)

Best so far -6.6 -8.3 -3.3

Our ES -9.0 -13.4 -6.3
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MCO B-Pillar – Side Crash

�Minimization of mass & 

displacement

�Finite element mesh

• ~ 300.000 elements

� Independent parameters: 

Thickness of 10 units

�Constraints: 0

�ES successfully 

developed Pareto front

Mass

In
tr

u
s
io

n
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MCO Shape of Engine Mount

� Mass minimal shape with
axial load > 90 kN

� Finite element mesh

• ~ 5000 elements

� Independent parameters:

9 geometry variables

� Dependent parameters: 7

� Constraints: 3

� ES optimized mount

• less weight than mount optimized 

with best so far method

• geometrically better deformation

99

Safety Optimization – Example

�Production Run !

�Minimization of body mass 

�Finite element mesh

• Crash ~ 1.000.000 elements

• NVH   ~    300.000 elements

� Independent parameters: 

• Thickness of each unit: 136

�Constraints: 47, resulting from various loading 

cases

�180 (10 x 18) shots ~ 12 days

�No statistical evaluation due to problem 

complexity 100
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Safety Optimization – Example of use

� 13,5 kg weight reduction by ES

� Beats best so far method significantly

� Typically faster convergence velocity of ES

~ 45% less time (~ 3 days saving) for comparable quality 

needed

� Still potential of improvements after 180 shots.

� Reduction of development time from 5 to 2 weeks allows for 

process integration

Generations
M

a
s
s

Initial Value

Our Evolution Strategy

101

Optical Coatings: 
Design Optimization

� Nonlinear mixed-integer problem, variable dimensionality.

� Minimize deviation from desired reflection behaviour.

� Excellent synthesis method; robust and reliable results.

102

Dielectric Filter Design Problem

Client:

Corning, Inc.,              
Corning, NY

Dielectric filter design.

n=40 layers assumed.

Layer thicknesses xi in [0.01, 
10.0].

Quality function: Sum of quadratic 
penalty terms.

Penalty terms = 0 iff constraints 
satisfied.

103

Results: Overview of Runs
�Factor 2 in quality.

�Factor 10 in effort.

�Reliable, repeatable 

results.

Benchmark

104
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Problem Topology Analysis: 
An Attempt

� Grid evaluation for 2 variables.

� Close to the optimum (from vector of quality 0.0199).

� Global view (left),          vs.          Local view (right).

105

� FE mesh of 1/3 geometry: 98.610 nodes, 357.300 tetrahedrons, 92.830 

radiation surfaces

large problem:

- run time varies: 16 h 30 min to 32 h (SGI, Origin, R12000, 400 MHz)

- at each run: 38,3 GB of view factors (49 positions) are treated!

Bridgman Casting Process

18 Speed Variables 
(continuous) for 
Casting Schedule

Turbine
Blade
after Casting

106

Bridgman Casting Process

Quality Comparison of the Initial and Optimized Configurations

Initial (DoE) GCM(Commercial 

Gradient Based Method) Evolution Strategy

Global Quality

Turbine Blade

after Casting
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Traffic Light Control

Client:

Dutch Ministry of Traffic

Rotterdam, NL

Generates green times for 

next switching schedule.

Minimization of total delay / 
number of stops.

Better results (3 – 5%) / 

higher flexibility than with 

traditional controllers.

Dynamic optimization, 

depending on actual traffic 

(measured by control loops).

108
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Elevator Control

Client: 

Fujitec Co. Ltd., Osaka, Japan

Minimization of passenger 

waiting times.

Better results (3 – 5%) / 
higher flexibility than with 

traditional controllers.

Dynamic optimization, 

depending on actual traffic.
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Metal Stamping Process

Client: 

AutoForm Engineering GmbH,

Dortmund

Minimization of defects in the 

produced parts.

Optimization on geometric 
parameters and forces.

Fast algorithm; finds very 

good results.

110

Network Routing

Client: 

SIEMENS AG, München

Minimization of end-to-end-

blockings under service 

constraints.

Optimization of routing 

tables for existing, hard-

wired networks.

10%-1000% improvement.
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Nuclear Reactor Refueling

Client: 

SIEMENS AG, München

Minimization of total costs.

Creates new fuel assembly 

reload patterns.

Clear improvements  (1%-

5%) of existing expert 

solutions.

Huge cost saving.
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Business Issues
�Supply Chain Optimization

�Scheduling & Timetabling

�Product Development, R&D

�Management Decision Making, e.g., 
project portfolio optimization

�Optimization of Marketing Strategies; 
Channel allocation

�Multicriteria Optimization (cost / quality)

�... And many others

113

Literature …
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Leiden Institute of Advanced Computer 
Science (LIACS)

See www.liacs.nl and http://natcomp.liacs.nl

Masters in
Comp. Science

ICT in Business

Media Technology

Elected „Best Comp. Sci. Study“ by students.

Excellent job opportunities for our students.

Research education with an eye on business.

115

LIACS Research

116 Leiden Institute of Advanced Computer Science

Algorithms
Prof. J.N. Kok, Prof. T. Bäck

• Novel Algorithms

• Data Mining

• Natural Computing

• Applications

• Drug Design
• Medicine

• Engineering

• Logistics

• Physics

Imagery and Media
Dr. M. Lew, Dr. F. Verbeek

• Computer Vision and Audio/Video

• Bioimaging

• Multimedia Search

• Internet Technology

• Computer Graphics

Technology and 

Innovation Management
Prof. B. Katzy

• Coevolution of Technology and 

Social Structures

• Entrepreneurship

• Innovation Management

Synergies &

Collaboration

Core Computer 

Technologies
Prof. H. Wijshoff, Prof. E. Deprettere

• Embedded Systems

• Parallel / Distributed Computing

• Compiler Technology

• Data Mining

Foundations of 

Software Technology
Prof. F. Arbab, Prof. J.N. Kok

• Software Systems

• Embedded Systems

• Service Composition

• Multicore Systems

• Formal Methods

• Coordination / Concurrency
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