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A Brief Introduction to Multiobjective Optimization

( Multiobjective Optimization:
problems where multiple objectives
have to be optimized simultaneously
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A Brief Introduction to Multiobjective Optimiz

Observations: @ there is no single optimal solution, but
® some solutions (e) are better than others (o)

performance

207 Pareto front

(Pareto efficient frontier)
15 —

10 Vilfredo Pareto
(1848 —1923)

5 O] wikipedia
\ | { T | \ > cost
500 1000 1500 2000 2500 3000 3500

Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches:
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A Brief Introduction to Multiobjective Optimiz

Observations: @ there is no single optimal solution, but
® some solutions (e) are better than others (o)
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Selecting a Solution: Examples

Possible O ranking: performance more important than cost
Approaches: @ constraints: cost must not exceed 2400
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When to Make the Decision When to Make the Decision

Before Optimization: Before Optimization:

~ . :
' rank objectives, J_A

' rank objectives,
define constraints,. define constraints,...

L8 L8
- . - performance -
search for one of search for one . S
(good) solution (good) solution 201 Q
L ()
F F 15 7| ° O- .
\ | ° = too expensive
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When to Make the Decision When to Make the Decision

Before Optimization: After Optimization: Before Optimization: After Optimization:
) - ) :
r 1 -I— °® * r E j!ﬂ' °®
W rank objectives, search for a set of e rank objectives, search for a.set of e
" define constraints,. (good) solutions define constraints,. (good) solutions
l ﬁ l L
= ¥ -, ¥
= 1= .
= ] select one solution ° ] v select one solution °
search for one of " considering ¥o) search for one o " considering ¥o)
(good) solution l constraints, etc. N (good) solution i l constraints, etc. .
! ! Focus: learning about a problem
= trade-off surface
» interactions among criteria
= structural information

= also: interactive optimization
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Two Communities...
<G e (O

= beginning in 1950s/1960s = quite young field (first
= bi-annual conferences since papers in mid 1980s)
1975 = bi-annual conference since
= background in economics, 2001
math, management science = background evolutionary
= both optimization and decision computation (applied math,
making computer science,

engineering, ...)
= focus on optimization
algorithms

One of the Main Differences

Blackbox optimization
zeX (fr(®),-- -, fr(®))
only mild a;sumptions
—> EMO therefore well-suited for real-world engineering problems

non-linear ~ Noisy many objectives

uncertain huge
objectives problem search
expensive spaces

non-differentiable (integrated simulations) many constraints
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...Slowly Merge Into One
G e (O

= MCDM track at EMO conference since 2009
= special sessions on EMO at the MCDM conference since 2008
= joint Dagstuhl seminars since 2004
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The Other Main Difference

Evolutionary Multiobjective Optimization
= set-based algorithms
= therefore possible to approximate the Pareto front in one run

performance Pareto front
i T
enwrrnr:ental mating approximation
selection i
¥ selection
f
“;.". %
B Sty
. a S
evaluation . e
) variation T
L
cost
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Multiobjectivization

Some problems are easier to solve in a multiobjective scenario

example: TSP
[Knowles et al. 2001]

w8y — flx)

Multiobjectivization

by addition of new “helper objectives”

A
hz* i -,{{

* & 8 2 (fulx.0,b), f=(w.0,0))

[Jensen 2004]

job-shop scheduling [Jensen 2004], frame structural design
[Greiner et al. 2007], VRP [Watanabe and Sakakibara 2007], ...

by decomposition of the single objective

TSP [Knowles et al. 2001], minimum spanning trees [Neumann and
Wegener 2006], protein structure prediction [Handl et al. 2008a], ...

also backed up by theory e.g. [Brockhoff et al. 2009, Hand| et al. 2008b]

Innovization

Often innovative design principles among solutions are found

33505 47

’,m’ = T R T
example: ,/ ; g WSaA-IT (x_tancom] : \. o
clutch brake design /5 . ' \\ |3
- Q
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Innovization

Often innovative design principles among solutions are found

example:
clutch brake design

min. mass +

"y,

s

[Deb and Srinivasan 2006] stopping time

Innovization

Often innovative design principles among solutions are found

example: O g e
clutch brake design B e
[Deb and Srinivasan 2006] E " N

o4 on 0s 1 a2
ke Hame (b3}

Innovization [Deb and Srinivasan 2008]

Btopping Time

|
s

.
N\ sz
\\k L4t m.

= using machine learning techniques to find new and innovative

design principles among solution sets

= learning about a multiobjective optimization problem

Other examples:

=  SOM for supersonic wing design [Obayashi and Sasaki 2003]
= biclustering for processor design and KP [Ulrich et al. 2007]
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The History of EMO At A Glance

__first EMO approaches

dominance-based population ranking

dominance-based EMO algorithms with diversity preservation techniques

attainment functions

elitist EMO algorithms  preference articulation convergence proofs

2000 test problem design quantitative performance assessment

_multiobjectivization

uncertainty and robustness running time analyses quality measure design

MCDIVI + EMO

quality indicator based EMO algorithms
statistical performance assessment

2010 many objectwe optimization
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The EMO Community

. from Google maps
The EMO conference series:

EMO 2013
Sheffield, GB
EMO 2015 EMO 2009
Guimaraes, PT
<< Nantes, FR
~ EMO 2003 e EMO 2007
: Faro, PT . : _ Matsushima, JP
EMO 2005 E
Guanajuato, MX € EMO 2011

Quro Preto, BR
Many further activities:

special sessions, special journal issues, workshops, tutorials, ...

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

302

The History of EMO At A Glance

1984 first EMO approaches

Distribution of the references by calegories

m\

jance-based population ranking

‘dominance-based EMO algorithms with diversity preservation techniques

attainment functions

eitist EMO aigorithms preference articulation convergence proofs

test problem design quantitative performance assessment

uncertainty and robustness running time analyses O

MCDM +EMO quality indicator based EMO algorithms
Mmany-nbxecnve optimization statistcal performance assessment

T Dls:rlbnnnnorm references by year 3
| [ I TR N DI (IR

Overall: 8650 references by April 3, 2014

‘ 226
a1

=
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
= indicator-based EMO
= preference articulation

A Few Examples From Practice
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Starting Point Starting Point

cost h
What makes evolutionary multiobjective optimization
different from single-objective optimization? r 5 L
rformance performance
J— 0 — .
single objective multiple objectives

performance E‘ performance
+O—N - —
= L ' search space X
single objective multiple objectives objective space Z
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The Main Difference The Main Difference
cost h cost h
+M_' -f} _uﬁegormance E‘ performance +m ' -ﬁ performance m performance
1=t T — 1. ,+ T

single objective multiple objectives single objective multiple objectives
total order on FEIX)C B partial order on f{X) CB¥ total order on f{X1C R partial order on f{X) CB*
total (pre-)order on X preorder on X total (pre-)order on X preorder on X
where a better than & where « better than & where « better than & where & better than &
if f(a) < F(B) if f(a) prefrl F{b) if f{a) < F(b) if f(a) preficl F(B)

Pareto dominance .
. even more complicated:
weak Pareto dominance

i |
e-dominance sought are sets!

cone dominance .
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Most Common Example: Pareto Dominance

w weakly Parelo dominales v (v < pqp v):

u Parcto dominates v (U < pue v):

performance

V1 <i<k:fi(u)< [i(v)

uw gpur v AU );{\pm' u

Q
Q
20 incomparable
15 o °
° Q
10 Q °
o incomparable © © dominated
5 Q
o)
T T T T T T T cost
500 1000 1500 2000 2500 3000 3500
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Visualizing Preference Relations

cost ‘
' ‘]l!_ﬁl

+m ' !ﬁ performance performance
L=t u > T

single objective

multiple objectives

optimum
arrow from @ to & if f(a) < f{b] arrow from @ to b if @ weakly
dominates &

EMO tutorial, GECCO’2014, Vancouver, July 12, 2014
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Different Notions of Dominance

performance ¢
K_J\_ﬂ Q
20 | =
€ Q
° g-dominance
15 D -
°
10 Q
° Q 0
5 Q cone dominance
Q
T T T cost
500 1000 1500 2000 2500 3000 3500

Visualizing Preference Relations

(ercr formance 2)

Ucm;l.-. 5)

optima k B

:\\ note:

reflexive and

transitive edges
not shown
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Pareto-optimal Set and Pareto(-optimal) Fron

The minimal set of a preordered set (Y, <) is defined as
Min(Y,S)={acY|VWeY:bSa=a<lb}

Pareto-optimal set Min(X, <p.,) Pareto-optimal front
non-optimal decision vector QO  non-optimal objective vector

xs decision space 2 objective space
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Approaches To Multiobjective Optimization

A multiobjective problem is as such underspecified
...because not any Pareto-optimum is equally suited!

Additional preferences are needed to tackle the problem:

Solution-Oriented Problem Transformation:
Classical approach: Induce a total order on the decision space,
e.g., by aggregation

Set-Oriented Problem Transformation:

Recent view on EMO: First transform problem into a set problem
and then define an objective function on sets [Zitzler et al. 2010]

Preferences are needed in bases cases, but the latter are weaker!

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Other Related Definitions

Computational complexity for discrete problems:
multiobjective variants can become NP- and #P-complete

Size: Pareto set can be exponential in the input length
(e.g. shortest path [Serafini 1986], MSP [Camerini et al. 1984])

i N )
- ideal poin
f1 f1
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Solution-Oriented Problem Transformations

. parameters ,
multiple single
objectives | objective

(f1(x), f2(x), ..., fi(x)) —transformation —> s(x)

A scalarizing function sis a function s : Z — I& that maps each
objective vector w = (#1,...,1,) € Z to areal values(u) € R

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014
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Solution-Oriented Problem Transformations

. parameters ,
multiple single
objectives | objective

(f1(x), f2(X), ..., f(x)) —itransformation —> s(x)

ff\ Example 1: weighted sum approach
Y (Wy, Wy, ..., W,)
A I
Y

7/\/Z/\\ TY T WaYg t WY

N S
0\{/\ /> Disadvantage: not all Pareto-
\/‘/‘ N2 optimal solutions can be found if
AN N, 6 the front is not convex

Set-Oriented Problem Transformations

For a multiobjective optimization problem (X, Z, f, g, <),
the associated set problem is given by (0,9, I', G, ) where

e T = 2% ig the space of decision vector sets,
L.e., the powersel ol X,

e (0 — 27 is the space of objective vector scts,
i.e., the powerset of %,

I 1s the extension of £ to sets, Le.,

F(A):—{f(a) :ac A} for A€ T,

.
)
|

..... (') is the extension of g to sets,
ie., Gi(A) =max{gi(a) rac A} for I <i<mand A e T,

e F extends = to sets where
Az BD=¥Ybecl3Fac A:a= bh.
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Solution-Oriented Problem Transformations

, parameters .
multiple single
objectives | objective

(f1(x), f2(X), ..., f(x)) —transformation —> s(x)

f2 Example 2: weighted Tchebycheff
Tl — | My Ay o A
ol — 11—
I Bl Bl
O | — | —| y=max | N(u; - z)|
Q... .
| ol >
40 —_— - —
o |, ﬁ{;_
L — Several other scalarizing functions
i are known, see e.g. [Miettienen 1999

Pareto Set Approximations

Pareto set approximation (algorithm outcome) =
set of (usually incomparable) solutions

performance

@8 weakly dominates 'B
= not worse in all objectives
and sets not equal

€1 dominates Bl
= better in at least one objective

@8 strictly dominates iG)
= better in all objectives

B' is incomparable to iGl
cost = neither set weakly better

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014
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What Is the Optimization Goal of a Set Proble

= Find all Pareto-optimal solutions?
* Impossible in continuous search spaces
* How should the decision maker handle 10000 solutions?
= Find a representative subset of the Pareto set?
* Many problems are NP-hard
» What does representative actually mean?
= Find a good approximation of the Pareto set?
» What is a good approximation?
» How to formalize intuitive understanding:

O close to the Pareto front
® well distributed

Most common: use of quality indicators

Problem Transformations and Set Problems

single solution problem
CxD Cx o
) = (fiz) fole), - fel)) A — L f(2) [« € A}

na 3
@&=D D

set problem

search space

objective space

oy Vi) 2 fily) AR BiEVepSeear =y

G

(partially) ordered set

e.g. via aggregation
via set quality indicators

(totally) ordered set

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014
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Quality of Pareto Set Approximations

A (unary) quality indicator ¥ is a function I: # =2X 3 R
that assigns a Pareto set approximation a real value.

well-known examples:

f /\ f,
)
° e
reference set x
° |/ 4 /’
o — )E €
°
W.J
€
f; fi

hypervolume indicator epsilon indicator

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

General Remarks on Problem Transformatio

Main Goal:
Transform a preorder into a total preorder on X

Methods:

= Define single-objective function based on the multiple criteria
(e.g. via aggregation)

= Define total preorder on sets by using a quality indicator
(e.g. via hypervolume indicator)

Question:

Is any total preorder okay or are there any requirements
concerning the resulting preference relation?

= Underlying dominance relation should be reflected!

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014



Refinements and Weak Refinements Example: Refinements Using Indicators

ref

ref ref

O < refines a preference relation < iff ASB:=1(A) >1(B) ASB:=1(AB) <I(BA)
- ref ref I(A) = volume of the _
ASBABAA=A<SBABAA (better = better) . I(A,B) = how much needs A to
weakly dominated area .
) C be moved to weakly dominate B
in objective space
= fulfills requirement
ref
® < weakly refines a preference relation <if = ° v @
t
ref i"...
AxBAr BLA=ALB (better = weakly better) _—
ref ’ A
= does not fulfill requirement, but < does not contradict < (A
I sought are total refinements... [Zitzler et al. 2010]
unary hypervolume indicator binary epsilon indicator

Example: Weak Refinement / No Refinement
ref ref
A< B:=I(AR) <I(B,R) A< B:=I(A) <I(B) The Big Picture
I(A.R) = how much needs A to (A) = variance of pairwise Basic Principles of Multiobjective Optimization
be moved to weakly dominate R distances . . T
= algorithm design principles and concepts
.. R L
g ] weak refinement o refinement performance assessment
13
_.i i v Selected Advanced Concepts
|_".;/ .......... | N = indicator-based EMO
____’ . L.. . .
_ _I. Y i = preference articulation
! K
] .'-A .
- i_—_’— 9 [ A Few Examples From Practice
unary epsilon indicator unary diversity indicator
© Dimo Brockhoff, INRIA Lille - Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014
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Algorithm Design: Particular Aspects

mating selection

representation ‘i fitness assignment

3 variation operators

2 environmental selection

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Criterion-Based Selection: VEGA

select
according to shuffle [Schaffer 1985]
i =
f, T,
fy T,
e Tt
fi T,

population k separate selections mating pool

Drawback: only allows to find extremes of the Pareto front

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Fitness Assignment: Principal Approaches

dominance-based
SPEA2, NSGA-II
“‘modern” EMOA

aggregation-based criterion-based
weighted sum VEGA
but also decomposition

., -based EMO o
’ /(//
7,
Q Q //
Q B vi Q vi

parameter-oriented
scaling-dependent

00000000 OCOCOIOIOSINOS Set-oriented
scaling-independent

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Aggregation-Based: Multistart Constraint Metho

Underlying concept:
= Convert all objectives except of one into constraints
= Adaptively vary constraints

y2 maximize f,
—

feasible region

constraint

© Dimo Brockhoff, INRIA Lille - Nord Europe
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Aggregation-Based: Multistart Constraint Metha Aggregation-Based: Multistart Constraint Metho

Underlying concept: Underlying concept:
= Convert all objectives except of one into constraints = Convert all objectives except of one into constraints
= Adaptively vary constraints = Adaptively vary constraints
y2 maximize f, y2 maximize f,
— —
. "Q'.
o, o,
8, 0, @ . .
feasible region
. . . Q- Q‘. Q. Qc H
feasible region constraint
. L@, 0 0.0 0
constraint et —
oS S S S S NS yi
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General Scheme of Most Dominance-Based EM

Ranking of the Population Using Dominance

... goes back to a proposal by David Goldberg in 1989.

‘ mating selection (stochastic) | fitness assignment ... is based on pairwise comparisons of the individuals only.

4 partitioning into
dominance classes
= dominance rank: by how f2
i many individuals is an
population (archiv) offspring individual dominated?

MOGA, NPGA

= dominance count: how many
individuals does an individual
dominate?
SPEA, SPEA2

= dominance depth: at which

v rank refinement within
dominance classes

Q

environmental selection (greedy heuristic) |7

front is an individual located? gg:::? ance _ ’%,,o
Note: good in terms of set quality = good in terms of search? NSGA, NSGA-II, most of the Q eo'%{ 1 f
recently proposed algorithms g
© Dimo Brockhoff, INRIA Lille - Nord Europe EMO tutorial, GECC0’2014, Vancouver, July 12, 2014
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lllustration of Dominance-based Partitioning

f2 dominance rank f,  dominance depth

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Example: NSGA-II Diversity Preservation

Density Estimation
crowding distance:

= sort solutions wrt. each
objective

= crowding distance to neighbors: [d(i)

d(i) — |[fr (i = 1) = frn(i + 1) i
I;m e I

f;

© Dimo Brockhoff, INRIA Lille — Nord Europe
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fi

Refinement of Dominance Rankings

Goal: rank incomparable solutions within a dominance class

© Density information (good for search, but usually no refinements)

Kernel method k-th nearest neighbor
density = density =
function of the function of distance
distances to k-th neighbor
Q
f f
f Q
o @

Histogram method

density =
number of elements
within box

Q

. O
Q

® Quality indicator (good for set quality): soon...

© Dimo Brockhoff, INRIA Lille - Nord Europe
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SPEA2 and NSGA-II: Cycles in Optimization

Selection in SPEA2 and NSGA-II can result in

deteriorative cycles

non-dominated
solutions already
found can be lost

£y
4200

T T
NEGA-IT

RPN

T T T T
Pareta ser -

Archive elements after t=5.000.000 ©
Archive elements afier 1=10,000.000 &
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Hypervolume-Based Selection

Latest Approach (SMS-EMOA, MO-CMA-ES, HypE, ...)
use hypervolume indicator to guide the search: refinement!

Delete solutions with Hypervolume of &: 1
the smallest !,;(A}:ju.(?}di
T

hypervolume loss _‘

d(s) = ly(P)>-Iu(P /{s}) * ]

iteratively NG e ey GBS0

-a ~ . | J-'

But: can alsoresult in  myinimize |
cycles if reference w#=0 mm% gﬁt —

point is not constant [Judt et al. 2011] fypemhsne

and is expensive to compute exactly [Bringmann and Friedrich 2009]

Moreover: HypE [Bader and Zitzler 2011]

Sam:lin= + Contribution if more than 1 solution deleted
© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Scalarizing Approaches

Open Questions:

= how to choose “the right” scalarization even if the direction in

objective space is given by the DM?
= combinations/adaptation of scalarization functions

» independent optimization vs. cooperation between single-

objective optimization

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014

Decomposition-Based Selection: MOEA/D

MOEA/D: Multiobjective Evolutionary Algorithm Based on
Decomposition [Zhang and Li 2007]

Ideas:
= Optimize N scalarizing functions in parallel
= Use best solutions of “neighbored scalarizing function” for

mating
= keep the best solutions for each
scalarizing function b,
= eventually replace neighbors . B
= use external archive for non- i
dominated solutions P
= several improved versions i .
recently f,

Variation in EMO

= At first sight not different from single-objective optimization
= Most algorithm design effort on selection until now
= But: convergence to a set # convergence to a point

Open Question:
= how to achieve fast convergence to a set?

Related work:
= multiobjective CMA-ES [lgel et al. 2007] [VoR et al. 2010]
= set-based variation [Bader et al. 2009]
= set-based fitness landscapes [Verel et al. 2011]

© Dimo Brockhoff, INRIA Lille — Nord Europe EMO tutorial, GECCO’2014, Vancouver, July 12, 2014



Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice

Two Approaches for Empirical Studies

Attainment function approach: Quality indicator approach:

= Applies statistical tests directly = First, reduces each
to the samples of approximation approximation set to a single
sets value of quality

= Gives detailed information about = Applies statistical tests to the

how and where performance samples of quality values

differences occur

.l , Indicator A B

E ] | = f‘ :ﬁaf.;\:é | Hypervolume indicator | 6.3431  7.1024
= = e-indicator | 1.2000  0.12722

| 4 - | 4 ™ Ry indicator | 0.2434  0.1643

CTCTN  ~ T Ry indicator | 06454 0.3475

see e.g. [Zitzler et al. 2003]
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Once Upon a Time...

... multiobjective EAs were mainly compared visually:

by ‘A:A LA wir .
R S fh Y
N Ta e ATy N 4
0.a 03 wp 0.BSTRE 0.7 B,
. N N N ” T

[

ZDT6 benchmark problem: IBEA, SPEA2, NSGA-I|

Empirical Attainment Functions

three runs of two multiobjective optimizers

3 f
ot 14 w0 n ot 043 /3 21 R4
154 P 15— P ’
|- .
fy e [ R
T ] - L]
R A %
L] N [ ] i
L . l'/’j L]
. [
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frequency of attaining regions
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Attainment Plots

50% attainment surface for IBEA, SPEA2, NSGA2 (ZDT6)

1.35 L. . -
e,
- ‘AA A
1.3} -~
.
1.25F ' A
e,
1.2 A
1 t
. .
1.15 e L
: t“ 4
. A‘“"‘ A A
1.2 1.4 1.6 1.8°7 "2
latest implementation online at
http://eden.dei.uc.pt/~cmfonsec/software.html
see [Fonseca et al. 2011]

Example: Box Plots

epsilon indicator

hypervolume R indicator

IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2 IBEA NSGA-IISPEA2

0.08 E 0.008 9-00014
. 1
pTLZ2 0% * oo % 0280008 i ==
0.04 0.004 ; 000006
0.00004
0.02 0.002
; 000002
1 2 3 1 2 3 B 2 3
0.6 0.8 0.4
0.5
0.6 0.3
Knapsacko. s
0.3 0.4 0.2
0.2 0.2 0.1
0.1
1 2 3 1 2 3

1 2 3

ZDT6 o' 0033 % Wk +
G e G i o
0.1 * 0.04 +
1 2 3
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Quality Indicator Approach

Goal: compare two Pareto set approximations A and B

hypervolume 432.34 420.13

distance 0.3308 0.4532 « ”
diversity 0.3637  0.3463 A better
spread 0.3622 0.3601

cardinality 6 5

Comparison method C = quality measure(s) + Boolean function

quality Boolean
measure function
AB —— | statement
reduction interpretation Y,

Statistical Assessment (Kruskal Test)

ZDT6 DTLZ2
Epsilon R
is better is better
than than
f =>|IBEA |NSGA2 SPEA2 IBEA | NSGA2 SPEA2
IBEA ~0 © |0 © | BEA 0 © (0 ©
NSGA2 |1 ~0 @ NSGA2 |1 1
SPEA2 |1 1 SPEA2 |1 ~0 ©
Overall p-value = 6.22079e-17. Overall p-value = 7.86834e-17.
Null hypothesis rejected (alpha 0.05) Null hypothesis rejected (alpha 0.05)

Knapsack/Hypervolume: H, = No significance of any differences
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Problems With Non-Compliant Indicators What Are Good Set Quality Measures?

5 T T : - : = There are three aspects [Zitzler et al. 2000]
A i COT TN, TIFETETT O TCTTITTIOeS CXPETTTICTIITY W Ays TITVrves T TRACT
Indicator A B B of performance. In the case of mulaoljectve op . the definition of qualicy is
g Generational distance 346396 237411 I substantially more complex than for single-objectve opimization problems, because the
4+ gk g e T A optimization goal itself consises of multiple objectives:
Spacing (Schott) | 026476 0.19989
Max Pareto front error 3.35489 331314 o The distance of the resulting nondominated set o the Parceo-opeimal frone should be
Lxtent 3.56039 357319 minimized.
3F 3 " o A good (in most cases uniform) f“‘"'i|'llﬁ<_m of the solutons found is desirable, The
&3 assessment of this criterion might be based on a cermin distance merric,
e
E P 3 + o ‘The exment of the obrined nondominared frone should be maximized, i.e., for each
£ oljecnve, a wide range of values should be covered by the nondomimated solutons,

2IF A .# i lin the lirerarre somne arrempes can e found o farmalize the abose definirion tor marss
. Wrong! [Zitzler et al. 2003]

An infinite number of unary set measures is needed to detect
in general whether A is better than B
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Open Questions: The Big Picture
= how to design a good benchmark suite?

. indi I ? . . . . . . .. .
are there other u.nat?y |nd|cato.rs. that are (weak) reflnements. Basic PrlnC|pIes of Mult|object|ve Optlmlzatlon
* how to compute indicators efficiently (enough for practice)?

* how to achieve good indicator values? = algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
» indicator-based EMO
= preference articulation

A Few Examples From Practice
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Indicator-Based EMO: Optimization Goal

When the goal is to maximize a unary indicator...
= we have a single-objective set problem to solve
= but what is the optimum?
= important: population size y plays a role!

Indicator Single-objective

Problem

Multiobjective
Problem

Optimal p-Distribution:
A set of p solutions that maximizes a certain unary indicator |
among all sets of py solutions is called
optimal p-distribution for I.

[Auger et al. 2009a]

Indicator-Based EMO

Open Questions:
= How do the optimal p-distributions look like for >2 objectives?
= how to compute certain indicators quickly in practice?

= several recent improvements for the hypervolume indicator
[Yildiz and Suri 2012], [Bringmann 2012], [Bringmann 2013]

= how to do indicator-based subset selection quickly?
= what is the best strategy for the subset selection?

further open questions on indicator-based EMO available at
http://simco.gforge.inria.fr/doku.php?id=openproblems
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Optimal p-Distributions for the Hypervolume

Hypervolume indicator refines dominance relation
—> most results on optimal p-distributions for hypervolume

Optimal p-Distributions (example results)

[Auger et al. 2009a]:
= contain equally spaced points iff front is linear
» density of points oc \/—f'(x) with f’ the slope of the front

[Friedrich et al. 2011]:
optimal p-distributions for the
hypervolume correspond to HYP
g-approximations of the front

log{minfA ja, B/b})

OPT I+

Ala+ JHIE
| VAT + BT
n—

Flog(A fa) | 1k
logHYP | 4 YR/ om0

n-2

! (probably) does not hold for > 2 objectives
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Overview

The Big Picture

Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts
= performance assessment

Selected Advanced Concepts
= indicator-based EMO
= preference articulation

A Few Examples From Practice
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Articulating User Preferences During Search Incorporation of Preferences During Search

What we thought: EMO is preference-less Nevertheless...
Ve Uy e DT, [Zitzler 1999] = the more (known) preferences incorporated the better
Search before decision making: Optimization is performed without any pref- = in particular if search space is too large
erence information given. The result of the search process is a set of [Branke 2008], [Rachmawati and Srinivasan 2006], [Coello Coello 2000]
(1deally Pareto-aptimal) candidate solutions from which the final choice 7
is made by the DM. . . . -
’ 0 Refine/modify dominance relation, e.g.:
DNescisi Lei dAurineg h: Ths TIM ran articnlats Aurineg

= using goals, priorities, constraints ’
[Fonseca and Fleming 1998a,b] K

= using different types of cones
[Branke and Deb 2004]

What we learnt: EMO just uses weaker preference information

) |
:;\ggir;r:ental ° preferable? ® Use quality indicators, e.g.: o .
3outof6 _»4' * based on reference points and directions [Deb and Sundar 2006,
Deb and Kumar 2007]
= based on binary quality indicators [Zitzler and Kiinzli 2004]
= based on the hypervolume indicator (now) [Zitzler et al. 2007]
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Example: Weighted Hypervolume Indicator Weighted Hypervolume in Practice

[Zitzler et al. 2007] 1BEA I IBEA
P .
W I
) = !w(f)u‘f +§ ; e
weighted ¥ - 3
hypervolume
- ‘I-\"’"\'. ﬂ I i

general
= mﬂm “m
-y 2 Hypervedune
\‘\_ . i 1
- "
¥ e .
5 E & L& & &
[Auger et al. 2009b]
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Overview

The Big Picture
Basic Principles of Multiobjective Optimization
= algorithm design principles and concepts

» performance assessment
Selected Advanced Concepts

indicator-based EMO
= preference articulation

A Few Examples From Practice
Application: Design Space Exploration
— Implementation

i

Truss Bridge Design
[Bader 2010]
F— \' - : A i v — i
/NS N/ \\_/’r W AVAVAVAY
o i
[ no robustriess HYPE cosa |
0. 10- ‘i\
O%a0 * 200 ° 10 6%0 200 d
EMO tutorial, GECCQ'2014, Vancouver, July 12, 2014

© Dimo Brockhoff, INRIA Lille — Nord Europe

Application: Design Space Exploration

v
Specification @folin[r£1ilels—>  Evaluation —> Implementation

11

Application: Design Space Exploration

i

Truss Bridge Design | Network Processor Design
[Bader 2010] [Thiele et al. 2002] = =
; /_/ \\ /z' N\ f}\\./f' N/ \\_ /_
T ’,} bl e | IS
0" 0 =
i no r(lbul;tm-!s‘, -

. %
O | { | L (T | i ' .
PSS — A= N et W Vi e Al el
: r ¥
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Application: Design Space Exploration Application: Trade-Off Analysis

. i Module identification from biological data [Calonder et al. 2006]
Truss Bridge Design | Network Processor Design
[Bader 2010] [Thiele et al. 2002]
P st —n — i :"m"_ H 1
NN\ \/ \/\/ \/] Fllnd group of genes wrt g o GEfwcEL
L O S | different data types: o GEf v PPIL |
T 08 +  GEf, vs. metabolic 1, |
A = similarity of gene 3 A0
= Water resource - expression profiles ~ yrosf
no robustness ata’ T 4 1o}
' management o - 2_ 08/ % Bk
. . - e 1 4 . % i + b
i [Siegfried et al. 2009] J | %_:.‘ S ] f)verlap.of protein g 0 &3‘ ¥
I ' i IR S interaction partners o, "
P T ) 02 o, +
4 = metabolic pathway s i *
e map distances i Xine il
- A4 w 0 L] L
R e 1] 02 04 0.6 o8 1
i i “‘--,,n = g distance chjective f, (ALL)
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Conclusions: EMO as Interactive Decision Supgp
A modeling

The EMO Community

Links:

= EMO mailing list: https://lists.dei.uc.pt/mailman/listinfo/emo-list

=  MCDM mailing list: http://lists.jyu.fi/mailman/listinfo/mcdm-discussion
= EMO bibliography: http.//www.lania.mx/~ccoello/EMOO/

= EMO conference series: http://www.dep.uminho.pt/EMO2015/
|
Books:

= Multi-Objective Optimization using Evolutionary Algorithms
Kalyanmoy Deb, Wiley, 2001

= Evolutionary Algorithms for Solving Multi Evolutionary Algorithms

visualization for Solving Multi-Objective Problems Objective Problems, Carlos A.
Coello Coello, David A. Van Veldhuizen & Gary B. Lamont, Kluwer, 2nd
Ed. 2007

= Multiobjective Optimization—Interactive and Evolutionary
Approaches, J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors,
volume 5252 of LNCS. Springer, 2008 [(still) many open questions!]

= and more...

specification gt optimization

preference {8 l
articulation e |
~

’=  decision making
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PISA: http://www.tik.ee.ethz.ch/pisal

Download of Selectors, Variators and Perdormance Assessie

Wiisa e page 4 cuararm and yabector (1a4 3430 PITGRIES 3 FISA) 38 wab 38 parformance
P — Amyeaamact!. Tha ety st 3] barchmack e st
of differant optemuter: x appkestion larm the are of
Compudiet Gevie Et can e Ubed 20 & baem ek Drobbem s Tha bectons s BEA-of st avolsonary
a . o i U ke o dberet 8 mochub, piwate Kook o8 Yrde el Suferd 4
Mot
B Dsarieny ek pesnted ot . planse
man 20300291
Bariormance
B rasaTae
s and St &

& License

T , and many more: |
= jmetal, Shark,
i ~ « MOEA Framework, »

Additional Slides
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Challenging Open (Research) Directions

=  Benchmarking
= comparison with classical approaches
= where are real strengths of EMO (how much better?)
= algorithm recommendations for practice

= Many-objective Optimization

= growing EMO and MCDM to one field

Questions?
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