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Presentation Outline

e Introduction

@ Overview of the basic PSO

e Some Basic Applications of PSO
e PSO Issues

e Particle Trajectories

e PSO as Universal Optimizer
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Introduction
The Origins

Particle swarm optimization (PSO):
@ developed by Kennedy & Eberhart [11; 22],
@ first published in 1995, and
@ with an exponential increase in the number of publications since
then.
What is PSO?
@ a simple, computationally efficient optimization method
@ population-based, stochastic search

@ individuals follow very simple behaviors:
e emulate the success of neighboring individuals,
o but also bias towards own experience of success
@ emergent behavior: discovery of optimal regions within a high
dimensional search space
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Introduction (cont)

The Origins

What are the origins of PSO?
@ In the work of Reynolds on “boids” [36]
e collision avoidance
e velocity matching
o flock centering
@ The work of Heppner and Grenander on using a “rooster” as
attractor of all birds in the flock [18]
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Introduction (cont)
The Origins

@ Random adjustments to velocities (referred to as craziness)
prevented individuals to settle too quickly on an unchanging
direction

@ To further expand the model, roosters were added as attractors:

o personal best
@ neighborhood best

— particle swarm optimization

7/101
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Introduction (cont)
The Origins

@ Original PSO is a simplified social model of determining nearest
neighbors and velocity matching

@ Initial objective: to simulate the graceful, unpredictable
choreography of collision-proof birds in a flock

e Randomly initializes positions of birds
o At each iteration, each individual determines its nearest neighbor
and replaces its velocity with that of its neighbor

@ This resulted in synchronous movement of the flock, but flock
settled too quickly on an unanimous, unchanging flying direction
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Overview of Basic PSO

Main Components

What are the main components?

@ a swarm of particles

@ each particle represents a candidate solution

@ elements of a particle represent parameters to be optimized
The search process:

@ Position updates

Xi(t+1) =x;(t) +vi(t+ 1), X,'j(O) ~ U(Xmin,j7Xmax,j)

@ Velocity (step size)
e drives the optimization process
o step size
o reflects experiential knowledge and socially exchanged information

8/101
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Overview of Basic PSO “& Overview of Basic PSO Ge:g%; 2612
Social Network Structures $ Social Network Structures (cont) Silha™ - TR

Social network structures are used to determine best
positions/attractors
(a) Von Neumann (b) Pyramid (c) 4 Clusters
Star Topology Ring Topology
(d) Wheel
&
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Overview of Basic PSO
gbest PSO (cont)

Overview of Basic PSO
global best (gbest) PSO

@ y,(t) is the personal best position calculated as (assuming
minimization)

@ uses the star social network

velocity update per dimension: yilt+1) = yi(t) it f(xi(t+ 1)) = f(yi(1))

! xi(t+1) iff(x;(t+ 1)) < f(yi(t))

vii(t + 1) = vii(t) + e ()[y5(t) — x3 (O] + carzi(1)[F(t) — x;(1)] o "
@ y(1) is the global best position calculated as

@ v;i(0) = 0 (preferred) . A .

@ ¢y, ¢, are positive acceleration coefficients Y1) € Yo(®). . Yoo (DFFY(E) = min{F(yo(D)), ..., F(yn (1)}
@ ryj(t), rzi(t) ~ U(0,1) or (removing memory of best positions)

@ note that a random number is sampled for each dimension

y(t) = min{f(xo(t)), ... (X, (1))}

where ng is the number of particles in the swarm
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Overview of Basic PSO Overview of Basic PSO

gbest PSO Algorithm

local best (Ibest) PSO

Create and initialize an ny-dimensional swarm, S; o uses the ring social network

repeat
for each particlei =1,...,S.ns do vi(t+ 1) = vi(t) 4+ e (D]yi(t) — x()] + carai(D)[F(t) — x;(1)]
if £(S.x;) < f(S.y;) then ! ! e ! S !
\ Sy = Sx;; @ y; is the neighborhood best, defined as
end
if /(S.y;) < f(S.y) then Vit +1) € {Nilf(yi(t + 1)) = min{f(x)}, VX € Nj}
Sy=3Sy; : . .
end y= oy with the neighborhood defined as
end Ni = {Yicne (0, Viong 18, Vo1 (0, Vi), Vi1 (), - Vi (¢
for each particlei =1,...,S.ns do 1= Wi (0 Yimnyar (0, Yima (Y10, Yir (), iy ()
update the velocity; where ny; is the neighborhood size
dupdate the position; @ neighborhoods based on particle indices, not spatial information
en

. : e ) @ neighborhoods overlap to facilitate information exchange
until stopping condition is true; ) :

Engelbrecht (University of Pretoria) Particle Swarm Optimization
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Aspects of Basic PSO

Velocity Components

Aspects of Basic PSO

Geometric lllustration

@ previous velocity, v;(t) " -
@ inertia component () y(t+1)
e memory of previous flight direction ’ social Vek,cn.y x(t+2)
o prevents particle from drastically changing direction (4 1) inertia, new velocity
@ cognitive component, ¢ir{(y; — X;) new velocity §, psocial velocly x(t+ 1)
e quantifies performance relative to past performances cognitive velocity
e memory of previous best position fnerda veely coitve el .
o nostalgia x(t) A x(t) S
@ social component, cora(Y; — X;)
e quantifies performance relative to neighbors
e envy . o
- (a) Time Step t (b) Time Step t + 1
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Aspects of Basic PSO

Aspects of Basic PSO

Velocity Clamping

@ the problem: velocity quickly explodes to large values
@ solution:

vi(t+1) if [v(t+1)
sgn(v,-j) Vmax,j if |V,'j(t + 1)

| < Vmax j
vi(t+1) = /
U( ) { | > Vmax,j

@ controlling the global exploration of particles
@ does not confine the positions, only the step sizes

Engelbrecht (University of Pretoria) Particle Swarm Optimization

Velocity Clamping (cont)

@ Issues with velocity clamping:

e dimensions with ranges smaller than V4, will never be clamped
e changes search direction — normalized clamping

velocity update ———=—
position update = = = = =

va(t + 1)

vyt + 1)

v (t+ 1)

()

Change in Search Direction Due to Velocity Clamping

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 18/101

Aspects of Basic PSO

Velocity Clamping (cont)

@ problem-dependent

e dynamically changing V2« when gbest does not improve over
iterations [38]

BVimax (1) i F(9(1)) > F(§(t = 1)), v {
Vimax,j(t) ~ otherwise

[ decreases from 1.0 to 0.01
o exponentially decaying Vpax [16]

Vmax,j(t-i- 1) = (1 — (t/n,)")VmaxJ(t)

1,...

Vmax7j(t+1) = {

19/101
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Aspects of Basic PSO

Inertia Weight

@ to control exploration and exploitation
@ controls the momentum
@ velocity update changes to

vii(t + 1) = wvji(t) + ey (1) — xi(1)] + carai(1)[§() — x(1)]

o forw > 1

e velocities increase over time

e swarm diverges

e particles fail to change direction towards more promising regions
o forO<w<1

o particles decelerate, depending on ¢y and ¢,
@ exploration—exploitation

o large values — favor exploration

o small values — promote exploitation

@ problem-dependent

GECCO'14, 13/7/2014 20/101
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Aspects of Basic PSO Gﬁ%&
Inertia Weight (cont) $
Dynamically changing inertia weights
@ w~ N(0.72,0)
@ linear decreasing [39]
n—t
w(t) = (w(0) ~ w(n) "=+ wim)
@ non-linear decreasing [44]
w(t+1)=aw(t), w(0)=1.4
@ based on relative improvement [6]
emi(t) -1
where the relative improvement, m;, is estimated as
ity — T = Fxi(1)
f(¥i(1)) + F(xi(1))

Engelbrecht (University of Pretoria) Particle Swarm Optimization
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Aspects of Basic PSO

Constriction Coefficient (cont)

°
® x €[0,1]
@ x controls exploration—exploitation

k =~ 0: fast convergence, exploitation
k ~ 1: slow convergence, exploration

effectively equivalent to inertia weight for specific x:
W =x,$1 = xCin and g2 = xCal2

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014

if $ > 4 and k € [0, 1], then the swarm is guaranteed to converge

23/101
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Aspects of Basic PSO Ge:g%; 2612
Constriction Coefficient Sl

@ to ensure convergence to a stable point without the
need for velocity clamping

vi(t+1) = x[vi(t) + &1 (yi(t) — x;(t))

+2(¥j(t) — x;3(1)]

where

Y= 2K

2—¢—/d(o—4)

with
o o1+ 92
¢ = cin
P2 = Col

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014
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@ Synchronous interation strategy
o personal best and neighborhood bests updated separately from
position and velocity vectors
o slower feedback of new best positions

@ Asynchronous iteration strategy
e new best positions updated after each particle position update

o immediate feedback of new best positions
o lends itself well to parallel implementation

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014
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Aspects of Basic PSO

Iteration Strategies (cont)

Synchronous lteration Strategy

Create and initialize the swarm;
repeat

for each particle do

Evaluate particle’s fitness;
Update particle’s personal
best position;

Update particle’s
neighborhood best position;
end

Asynchronous lteration Strategy

Create and initialize the swarm;
repeat

for each particle do

Update the particle’s velocity;
Update the particle’s position;
Evaluate particle’s fitness;
Update the particle’s personal
best position;

for each particle do Update the particle’s
Update particle’s velocity; neighborhood best position;
Update particle’s position; end
end until stopping condition is true; |
until stopping condition is true;
ie i CIRG
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Aspects of Basic PSO

Acceleration Coefficients (cont)

@ low ¢y and ¢o:

e smooth particle trajectories
@ high ¢y and c»:

@ more acceleration, abrupt movements
@ problem dependent

e adaptive acceleration coefficients [35]

t
ci(t) = (C1,min - C1,max)Ft + C1,max

t
CZ(t) = (CZ,max - CZ,min)Ft + C2.min

27 /101
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Aspects of Basic PSO

Acceleration Coefficients

@ ci=0c=0?
@c >0,00=0:
e particles are independent hill-climbers
o local search by each particle
e cognitive-only PSO
@ ¢y =0,c>0:
e swarm is one stochastic hill-climber
e social-only PSO

@Cci=0C>0:

e particles are attracted towards the average of y; and y;
@ C > Cq.

e more beneficial for unimodal problems
@ G < Co:

e more beneficial for multimodal problems

Engelbrecht (University of Pretoria) Particle Swarm Optimization

Some Basic Applications of PSO

Function Optimization

Minimize the 2-D Bird function
f(x) = sin(x;)e(1~e0s02)’  cos(xp)el! =MD  (x; — xp)?

with x; € [—27, 27]

f(x1,x2)

f(x1,x2)

200
150
100

50

Engelbrecht (University of Pretoria) GECCO’14, 13/7/2014
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Some Basic Applications of PSO

Some Basic Applications of PSO

Training A Feedforward Neural Network

@ Objective is to find weight and bias values that minimizes an error
function, e.g. sum-squared error

@ Representation: particle represents weight vector and biases
@ Fitness function: Sean-squared error, classification error

@ Initialization:

o Small initial weights to prevent velocity from growing too fast
e Zero initial velocity, to start with as small as possible step sizes
o Small V.« to prevent too fast growth in velocity

Engelbrecht (University of Pretoria) Particle Swarm Optimization

Data Clustering

@ Objective is to find centroids such that intra-cluster distances are
minimized and inter-cluster distances maximized

@ Representation of centroid vectors:
Xi= (Mg, ... .M, ...,Mg)
@ Fitness function: Quantization error

lef:1 [ZVzpeck, E(zp, )]/ Nii

Je,i =

K

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014

30/101

PSO Issues

About Convergence
Particles are guaranteed under certain conditions to converge
to an equilibrium [8; 40; 9]:

@ Particles will converge to

o1y + ¢2f
P11+ @2
@ This is not necessarily even a local minimum
@ It has been proven that standard PSO is not a local minimizer [10]
Potential dangerous property:
@ whenx; =y, =Y,
@ then the velocity update depends only on wv;
@ if this condition persists for a number of iterations,

wv; — 0

GECCO'14, 13/7/2014
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PSO Issues

Roaming Particles

@ Empirical analysis [15] and theoretical proofs [17] showed that
particles leave search boundaries very early during the
optimization process

@ Potential problems:

o Infeasible solutions: Should better positions be found outside of
boundaries, and no boundary constraint method employed,
personal best and neighborhood best positions are pulled outside
of search boundaries

o Wasted search effort: Should better positions not exist outside of
boundaries, particles are eventually pulled back into feasible space.

o Incorrect swarm diversity calculations: As particles move
outside of search boundaries, diversity increases

Particle Swarm Optimization GECCO’14, 13/7/2014
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PSO Issues : PSO Issues

Roaming Particles (cont) Roaming Particles (cont)

Goal of this experiment: To  Experimental setup: Functions Used for Empirical Analysis to lllustrate Roaming Behavior
lllustrate @ A standard gbest PSO was used Function Definition Domain
@ particle roaming @ 30 particles AbsValue | f(x) = >.p, | [-100,100]
.behav.lor’ and . o w=0.729844 Ackley 00 = 200 "V A ST o Efeser) o | [32.768,32.768]
@ infeasible solutions o ¢ = o — 1.496180 Bukin 6 F(x) = 100,/|x2 — 0.01x2| + 0.01)x + 10| | [-15,5],[-3,3]
may be found ,
@ Memory-based global best selection Griewank (X)) =1+ 7005 S %% — 17, cos <%> [-600,600]
@ Synchronous position updates Quadri ] o | 2 100,100
@ 50 independent runs for each Ha HC (x) = (Zf;‘ X [-100,100]
initialization Strategy RaStrlgln f(X) = 10nx + 2121 ij —-10 COS(27TX]')> ['51 2,51 2]
Rosenbrock | f(x) = Y77 (100()(,-+1 — X224 (% — 1)2) [-2.048,2.048
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PSO Issues: Roaming s PSO Issues: Roaming

Percentage Particles that Violate Boundaries S ; Percentage Best Position Boundary Violations

0/ ang
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Percentage Parlcle Boundary Violations
Number of Pbest Boundary Violations

(a) Absolute Value (b) Ackley (a) Absolute Value
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V(0)=small rand Pbest Bnd

be
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PSO Issues: Roaming S PSO Issues: Roaming

Diversity Profiles EEE Finding Infeasible Solutions
S e o e
10 | wpgmalyand - | ok Jorghanana - |
L v(0)=rand Pbest Bnd v(0)=rand Pbest Bnd
i v(0)=small rand Pbest Bnd v(0)=small rand Pbest Bnd . e . . . .
w0 k| ] ] Functions Used for Empirical Analysis to lllustrate Finding of Infeasible
g “h 18! ] Solutions
H 2, i
| . ] Function Domain Function Definition
e din , _oAz\/l X 52 1 5nx 2rx;
i 1 | St s i Ackley [10,32.768] | f(x) = —20e =15 o 2= 5T oy 4
e : et T 2
80 160 240 320 400 480 560 640 720 800 %6 100 200 300 400 500 600 700 800 900 1000 ACk|eySR [_32 768, O] f(x) — —206_0-2 n z:lé1 ZJ — e% ]’1;(1 cc’5(27"21‘) +20+e
Iterations Iterations " ’
i -1 . .
(a) Ackley (b) Bukin 6 Eggholder (512512) | 0 = S (= 0gr +47)sin(y[1xg1 +x5/2 4 47]) + sin(y /13 — (41 +4D)(=x))
2
e o . B Griewank®? | [0,600] x) =1+ 005 3% 27 — T1}% cos (ﬁ
0 maland 7k Jganiana - 4 s e 5\ (9942
2000 1 v(O)=srairand Poost Brd 1 o, vO)=snaTiand Phest Bnd i Norwegian [1.1,1.1] f(x) = TT;% (COS(ﬂZj ) ( 100 )
oo | s 1 RosenbrockS | [-30,30] f(x) = z;}',’:xr‘ (100(z, =P (g - 1)2)
= = . 2
Z £ 1 Schwefel1.2S | [0,100] fx) = 27, (Z’H 2z
1000 ]
: 1 Schwefel2.26 | [-50,50] fx) = - 7, (x, sin ,/|xj\))
500 i 2 1 Spherical® [0,100] f(x) = zj"; 22
\ |
Salomon -100,5 f, = —cos(2r o™X, x? A X x2 414
L e L L o o [-100.,5] 14(x) = —cos(2m 37X, X7) 4+ 0.1 /55K, X7 +
40 80 120 160 200 240 280 320 360 400 ] 100 200 300 400 500 600 700 900 1000
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(c) Griewank (d) Rosenbrogk ... .. .ucce. & s
&, iani e &, e
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PSO Issues: Roaming < PSO Issues: Roaming
Finding Infeasible Solutions: Ackley S B Finding Infeasible Solutions: Eggholder
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PSO Issues: Roaming

Finding Infeasible Solutions: gbest Boundary Violations

0ol
o8|
= orf
os |
o5t |
04t |

03 |

Average Gbest Boundary Violations
s
Average Gbest Boundary Violations

< o2f
/ weicse —

o1 p barebonos PSO 1 o1
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SO —----—-
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25 3 45 5 1 2
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(a) Shifted Schwefel 1.2
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35 4
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3 4 5 6 7 8 9 10
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15
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PSO Issues: Velocity Initialization

Fitness Reduction Profiles

2 25 35 4 45 5
eratior

GECCO'14, 13/7/2014

(d) Shifted Sph&mfm CIRG
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PSO Issues

Velocity Initialization

Velocties have been initialized using any of the following:

o V,‘(O) =0

o Critique: Limits exploration ability, therefore extent to which the
search space is initially covered

o Counter argument: Initial positions are uniformly distributed

e Flocking analogy: Physical objects, in their initial state, do not have
any momentum

@ v;(0) ~ U(—Xmin, Xmax)™, where ny is the problem dimension

e Argument in favor: Initial random velocities help to improve
exploration abilities of the swarm, therefore believed to obtain better
solutions, faster

e Argument against: large initial step sizes cause particles to leave
search boundaries:

V,‘(O) ~

@ Initialize to small random values

Engelbrecht (University of Pretoria)
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PSO Issues: Velocity Initialization

Fitness After 1000 lterations

U(_Xmina Xmax)nx — Xi(1) ~ U(_2Xmina 2Xmax)nx
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Zero Init Random Init

Function No Pbest Bound No Pbest Bound
Absolute Value | 3.53E-001+2.87E+000 | 2.46E-0014+1.47E+000
Ackley 2.49E+00041.35E+000 | 2.68E+0004-2.67E+000
Bukin 6 6.20E-002+4.50E-002 | 6.65E-002+5.56E-002
Griewank 3.72E-002+5.26E-002 | 3.91E-0024-5.57E-002
Quadric 9.04E+001+8.70E+001 | 1.80E+002+3.15E+002
Rastrigin 6.66E+0014+-1.71E+001 | 7.37E+001+=2.16E+001
Rosenbrock 2.65E+001+1.53E+001 | 2.73E+001+1.66E+001
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PSO Issues: Velocity Initialization

Observations

PSO Issues

gbest PSO versus IbestPSO

The following general observations are made:

@ Small random initialization and zero initialization have similar
behaviors
@ Random initialization
e slower in improving fithess of best solution
resulted in larger diversity
had more roaming particles, roaming for longer
significantly more best positions left boundaries
took longer to reduce number of particle and best position violations
very slow in increasing number of converged dimensions
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PSO Issues

gbest PSO versus IbestPSO (cont)

Outcomes of Statistical Analysis Comparing Gbest with Lbest PSO

Function | Number of || Accuracy || Success Rate || Efficiency | Diversity
Class [Functions || > [ = [ < [ > [ =[< | >[=]<]>]=1]<
UM Seperable 7 5 0 2 6 0 1 2 0 5 5 0 2
Non-separable 3 2 1 0 2 1 0 2 1 0 2 0 1

Noisy 2 1 0 1 1 1 0 2 0 0 1 0 1
Shifted 5 2 3 0 2 3 0 2 3 0 1 0 4
Rotated 1 1 0 0 1 0 0 0 1 0 0 0 1
MM Seperable 6 1 2 3 2 2 2 3 1 2 6 0 0
Non-seperable 9 4 1 4 3 4 2 4 3 2 1 0 8
Shifted 10 3 4 3 5 5 0 8 1 1 1 0 9
Rotated 4 0 3 1 1 2 1 2 1 1 0 0 4

Noisy 1 0 1 0 0 1 0 0 1 0 0 0 1
Composition 11 1 2 8 0 4 7 1 5 5 0 0 11
Overall Total | 59 [[20 [ 17 [ 22 [[ 23 [ 23 [ 13 [ 26 | 17 [ 16 [[ 11 [ 0 [ 48
Overall Unimodal 18 11 4 3 12 5 1 8 5 5 9 0 9
Overall Multimodal 41 13 19 14 11 18 12 18 12 11 2 0 39
Overall Seperable 17 7 4 6 9 5 3 12 1 4 5 0 12
Overall Non-seperable 42 13 13 16 14 18 10 11 16 9 6 0_] 36
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Current opinions about gbest PSO:

@ Gbest PSO should not be used due to premature convergence to
local optima as observed for a number of optimization problems
[19; 24; 27, 32; 37]

@ Gbest PSO converges fast due to the faster transfer of the best
position throughout the swarm, and therefore the strong attraction
to one best position [2; 13; 14; 19; 24, 25; 27; 28; 29]

@ Gbest PSO is more susceptible to being trapped in local minima
than Ibest PSO [13; 14; 25].

@ Gbest PSO is best suited to unimodal problems and should not be
used for multimodal problems [2; 7; 21; 24; 32]

@ Gbest PSO does not perform well for non-separable problems
[25]. i
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PSO Issues: gbest vs Ibest

Fitness Profiles
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PSO Issues: gbest vs Ibest

Diversity Profiles

" goestbso —— 'ogesbso— | T
IpestPS0 —— IbesiPS0 —— BestPSO

300000

000 | s
S £
H H
200 200m
1500
50000

sl 100000 n L L L
0 200 400 600 80 1000 1200 1400 1600 1800 2000 0 1000 2000 3000 4000 5000

Heratons. Herations

(a) De Jong F4 (b) Rotated Elliptic (c) Griewank

obest PSO —— ' oestbso —
o — besS0

18000 350000

16000
300000

14000

§ ra00 V" e H
H H
5

S 200000
10000
o
o ‘
ol oo

0 E) o o m o we mw  we &0 s

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 49/101

PSO Issues

Iteration Strategies

@ Should a synchronous iteration strategy (SIS) or and
asynchronous iteration strategy (AIS) be used?
@ General opinions:

o AIS is generally faster and less costly than SIS [4; 26; 20; 33; 38]
o AIS generally provides better results [26; 20; 33; 38]
o AIS is better suited for Ibest PSO, while SIS is better for gbest PSO

(4]
@ Recently, it was shown that SIS generally yields better results than
AlS, specifically unimodal functions, and equal to AIS or better for
multimodal functions [34]

@ It was also recently stated that the choice of iteration strategy is
very function dependent [45]

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 51/101
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PSO Issues: gbest vs Ibest

Observations

@ None of the star or ring topologies can be considered outright best
for any of the main function classes

@ Very similar performance over 60 functions with respect to solution
accuracy

@ gbest PSO performed slightly better than Ibets PSO with respect
to success rate and efficiency

@ Ibest PSO is slightly more consistent than gbest PSO
@ Which topology is best, is function specific

[

R
%
UNIVERSITEIT VAN pRETORIA
UNIVERSITY OF PRETORIA
&y TUNIBESITN Yh PRETORIA

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 50/ 101

PSO Issues: lteration Strategies

Accuracy Scores

Ranks based on Final Fitness Values

Function | Numberof || gbestPSO || lbestPSO || GCPSO | BBPSO
Class [Functions [ > T =T < [>T =1<JI>T]T=1T<1I>T1T=1T1TKXK
UM | Sep 7 0 0 7 0 1 6 0 0 7 0 1 6
Non-sep 3 1 1 1 0 2 1 0 2 1 0 3 0
Noisy 2 0 0 2 1 1 0 1 0 1 1 0 1
Shifted 5 0 5 0 0 4 1 0 5 0 0 5 0
Rotated 1 0 0 1 0 0 1 0 0 1 0 1 0
MM | Sep 6 0 5 1 0 6 0 0 4 2 0 6 0
Non-sep 9 0 7 2 0 9 0 1 7 1 0 9 0
Shifted 10 2 6 2 0 10 0 1 7 2 1 8 1
Rotated 4 0 1 3 0 4 0 1 0 3 1 1 2
Noisy 1 1 0 0 0 1 0 1 0 0 1 0 0
Composition 11 7 4 0 0 11 0 7 3 1 10 0 1
Overall Total 59 11 29 19 1 49 9 12 28 19 14 34 11
Overall UM 18 1 6 11 1 8 9 1 7 10 1 10 7
Overall MM 41 10 23 8 0 41 0 11 21 9 13 24 4
Overall Sep 17 1 7 9 1 10 6 0 7 10 0 10 7
Overall Non-sep 42 10 23 9 0 39 3 12 21 9 13 25 4
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PSO Issues: Iteration Strategies

Observation

@ Unimodal functions: AIS better accuracy for most functions
@ Multimodal functions:

o No significant difference for most of the functions

e For the remainder of the functions, no clear winner

e For Ibest PSO not significant difference over all functions —
insensitive to iteration strategy

@ Separable functions: SIS not the preferred strategy for most of the
functions
@ Non-separable:

AIS bad for BBPSO

For Ibest PSO AIS slightly better than SIS

For gbest PSO, GCPSO, SIS slightly better
However, for most functions no significant difference

Particle Swarm Optimization
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Particle Trajectories

Convergent Trajectory

0 50 100 150 200 250 -40 30 20 10 0 10 20 £
t

(a) Time domain (b) Phase space

w=05and ¢ =¢o=1.4
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Particle Trajectories

Theoretical Results

Simplified particle trajectories [41; 9]
@ no stochastic component
@ single, one-dimensional particle

@ using w
@ personal best and global best are fixed:
y=1.0,y=00

Example trajectories:
@ Convergence to an equilibrium (figure 9)
@ Cyclic behavior (figure 10)
@ Divergent behavior (figure 11)

Engelbrecht (University of Pretoria) Particle Swarm Optimization

Particle Trajectories
Cyclic Trajectory
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Particle Trajectories

Divergent Trajectory

Particle Trajectories

Convergence Conditions
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Particle Trajectories

Stochastic Trajectories
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@ violates the convergence
condition

o forw=1.0,¢+c <4.0
to validate the condition
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@ What do we mean by the term convergence?
@ Convergence map for values of w and ¢ = ¢1 + ¢», where

$1 = Cil, 02 = Cal2

& 1
Convergence conditions on
values of w, ¢y and ¢:
1
1>w>5(01+¢2) =120
0 20 40

G +02 2

Convergence Map for Values of w and A
0=+ & smnasm CIRG
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Particle Trajectories

Stochastic Trajectories (cont)

w=09andci =c =20 .
@ violates the convergence

N ‘ ‘ ‘ ‘ condition
0l ] @ forw=0.9, ¢ +c <38
» | to validate the condition

What is happening here?
@ since 0 < ¢1 + ¢ < 4,
@ and ry,ro ~ U(0,1),

@ prob(cy + ¢, < 3.8) =
' 38 =095
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Particle Trajectories

PSO as Universal Optimizer

Good Convergent Parameter Choices

w=07andci=c=14

@ validates the convergence
condition
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PSO as Universal Optimizer (cont)

Exploration vs Exploitation

@ For each problem type, what are the issues, and how can PSO be
adapted to address these issues, while still maintaining the
behavioral principles of PSO?

@ An issue that relates to all of these problems:
Exploration—exploitation tradeoff

o exploration
o ability to explore the search space
@ need to maintain swarm diversity
o exploitation
@ ability to concentrate the search around a promising area to refine a
candidate solution
@ need ways to ensure that all particles converge on the same point

GECCO'14, 13/7/2014 63 /101
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@ Many different classes of optimization problems exist, for example,

Discrete-valued versus continuous-valued
Boundary constrained versus constrained
Single versus multi-objective

Static versus dynamic and noisy

Large scale

Unimodal versus multimodal

@ Original PSO was developed to solve boundary constrained,
single-objective, static, continuous-valued optimization problems

@ Can PSO be used to solve optimization problems of these different
problem classes, without changing the main principles of PSO?

CIR
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Discrete-Valued Optimization Problems

Binary PSO

@ What is the problem?
e PSO originally developed for optimizing continuous-valued variables
o Uses vector algebra on floating-point vectors
@ How to adapt PSO for binary-valued variables?
Binary PSO (binPSO) of Kennedy and Eberhart [23]
Velocity remains a floating-point vector, but meaning changes
Velocity is no longer a step size, but is used to determine a
probability of selecting bit 0 or bit 1
Position is a bit vector, i.e. x; € {0, 1}
How to interpret velocity as a probability?

’
1+ e vl

pii(t) =

Then, position update changes to

1 if U(0,1) < pj(t+ 1))
0 otherwise 5

9

GECCO'14, 13/7/2014
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Discrete-Valued Optimization Problems
Binary PSO (cont)

Issues:
@ Interpretation of control
parameters changes
o w: small values facilitate longer
exploration
o Vpax: smaller values promote
exploration

@ Initial velocities should be zero

@ Velocities should never move to
zero, but to 00 0

probabiity

GG:/%S/ de'

@ Curse of dimensionality

@ What happens if binary
representations of consecutive
numbers have a large Hamming
distance?

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014
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Discrete-Valued Optimization Problems

Angle Modulated PSO

@ Velocities and positions remain floating-point vectors
@ Find a bitstring generating function to generate bitstring solution

@ The generating function:
g(x) =sin(2r(x —a) x b x cos(2n(x —a) x ¢)) + d

sampled at evenly spaced positions, x

The coefficients determine the shape of the

generating function:
@ a: horizontal shift of generating function . /\
@ b: maximum frequency of the sin g o

function "l U ik \/

@ c: frequency of the cos function 0%
@ d: vertical shift of generating function 1

Discrete-Valued Optimization Problems
Angle Modulated PSO (cont)

Use a standard PSO to find the best values for these coefficients
Generate a swarm of 4-dimensional particles;

repeat

Apply any PSO for one iteration;

for each particle do

function;
Produce ny bit-values to form a bit-vector solution;
Calculate the fitness of the bit-vector solution in the original
bit-valued space;

end

until a convergence criterion is satisfied;

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014

Substitute values for coefficients a, b, ¢ and d into generating
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Large Scale Optimization Problems Ge;%/ 26!2
Cooperative PSO

@ Each particle is split into K separate parts of smaller dimension
[41; 42; 43]
@ Each part is then optimized using a separate sub-swarm
@ If K = ny, each dimension is optimized by a separate sub-swarm
@ What are the issues?
o Problem if there are strong dependencies among variables
e How should the fitness of sub-swarm particles be evaluated?

Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 68 /101
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Large Scale Optimization Problems

Cooperative PSO (cont)

%
.\)'
Ki = nxy mod K and K> = K — (ny mod K);

Initialize Ki [nx/K]-dimensional and K> | nx/K |-dimensional swarms;
repeat

for each sub-swarm S,k =1,...,K do
for each particlei =1, ..., Sx.ns do
if f(b(k, Sk.X,')) < f(b(k, Sky,)) then
Sk-Yi = Sk-Xi;
end
if f(b(k, Sky,)) < f(b(k, Sk\?)) then
| Sk.¥ = SkVii
end
end
Apply velocity and position updates;
end

until stopping condition is true;

vvvvvvvvvvvvvvvvvvvvvvv
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Multiple Solutions to Multimodal Problems Gﬁ%{y

Objective Function Stretching
Sequential niching, stretching the function to remove found
minima [30; 31]
Create and initialize a ny-dimensional swarm, S;
X =0;
repeat
Perform a single PSO iteration;
if /(S.y) < ethen
Isolate S.y;
Perform a local search around S.y;
if a minimizer X}, is found by the local search then
X = X U{X}};
Let f(x) < H(x);
end
end
Reinitialize the swarm S;
until stopping condition is true;

Engelbrecht (University of Pretoria)
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Multiple Solutions to Multimodal Problems

Niching capability of PSO:
@ Can the gbest PSO find more than one solution?
o Formal proofs showed that all particles converge to a weighted
average of their personal best and global best positions
o Therefore, only one solution can be found
o What if we re-run the algorithm? No guarantee to find different
solutions

@ What about /best PSO?
o Neighborhoods may converge to different solutions

e However, due to overlapping neighborhoods, particles are still
attracted to one solution
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Multiple Solutions to Multimodal Problems Ge;%; zSﬁZ

NichePSO

Parallel niching PSO [3]

Create and initialize a ny-dimensional main swarm, S;
repeat
Train main swarm, S, for one iteration using cognition-only model;
Update the fitness of each main swarm particle, S.x;;
for each sub-swarm Sy do
Train sub-swarm particles, Sk.X;, using a full model PSO;
Update each particle’s fitness;
Update the swarm radius Sk.R;
endFor
If possible, merge sub-swarms;
Allow sub-swarms to absorb any particles from the main swarm
that moved into the sub-swarm;
If possible, create new sub-swarms;
until stopping condition is true; X 1 ‘
Return Si.y for each sub-swarm Sy as a solution; [

GECCO'14, 13/7/2014
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Dynamic Environments

@ Objective: To find and track solutions in dynamically chang’ing
search spaces

xX*(t) = mxin f(x,w(t))

where x*(t) is the optimum found at time step ¢, and w(t) is a
vector of time-dependent objective function control parameters

@ Environment types:
o Location of optima may change
e Value of optima may change
o Optima may disappear and new
ones appear
e Change frequencey
@ Change severity

_______________

| Progressive

Spatial Severity
£
g
ct

i

Temporal Severity
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Dynamic Environments
Consequences for PSO (cont)

@ Environment change detection:
o Optimization algorithm needs to react when a change is detected in
order to increase diversity
o Use sentry particles [5]
o Gbest versus pbest versus arbitrary positions as sentries
@ How to respond to environment changes?
e Change the inertia update
e w ~ N(0.72,¢) [12], using no velocity clamping
o If decreasing inertia is used, reset w to larger value

GECCO'14, 13/7/2014
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Dynamic Environments

Consequences for PSO

@ PSO can not be applied to dynamic environments without any
changes to maintain swarm diversity

@ Recall that particles converge to a weighted average of their
personal best and global best positions

@ At the point of convergence, v; = 0, and the contributions of the
cognitive and social components are approximately zero

@ New velocities are zero, therefore no change in position

@ When the environment changes, personal best positions becomes
stale, and will cause particles to be attrackted to old best positions

@ Small inertia weight values limit exploration
@ Velocity clamping limits exploration

GECCO'14, 13/7/2014 74/101
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Dynamic Environments

Consequences for PSO (cont)

@ Reinitialize particle positions [12]:
o Reinitialize the entire swarm
o Reinitialize parts of the swarm
o Total reinitialization versus keeping previous personal best positions
@ Limit memory
o Reinitialize the personal best position to the particle’s current
position — only effective if swarm has not yet converged
o Reset personal best positions only if significant change in fitness is
observed
o Recalculate global best after resetting personal best positions

@ Do a local search around the previous optimum [46]
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Dynamic Environments Ge;%; Dynamic Environments
Charged PSO S Charged PSO (cont)

@ Some particles attract one another, and others repell one another
@ Velocity changes to @ dy = [[x(t) — x,(1)]]
N Qj is the particle’s charged magnitude

V,'j(t—i-'l) = WV,'j(t)—i-C1 f1(t)[y,'j(t)—X,'j(t)]—i—Cgfg(t)[yj(t)—X,'j(t)]+a,'j(t) Rc is the core radius

where a; is the particle acceleration, determining the magnitude of Ry is the perception limit of each particle

inter-particle repulsion [1] o If Q; = 0, particles are neutral and there is no repelling

ns o If Q; # 0, particles are charged, and repel from each other
aj(t) = Z a;(1) @ Inter-particle repulsion occurs only when the separation between
=1, two particles is within the range [Rc, Rp]
@ The repulsion force between particles i and / is @ The smaller the separation, the larger the repulsion between the
corresponding particles
(22) (xi(t) = x(1) it Re < oy < Ro ponama b |
Lt @ Acceleration is fixed at the core radius to prevent too severe
a;(t) = (%&ﬂ"’())) if dy < Re ( repelling
CIRG
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@ Based on quantum model of an atom, where orbiting electrons are
replaced by a quantum cloud which is a probability distribution Constrained optimization problem:
governing the position of the electron

@ Developed as a simplified and less expensive version of the minimize Fx), x= (%1, Xn)
charged PSO subject to gm(X) <0, m=1,...,ng
@ Swarm contains hm(X) =0, m=ng+1,...,ng+ np
o neutral particles following standard PSO updates xj € dom(x))
e charged, or quantum particles, randomly placed within a
multi-dimensional sphere where ng and nj are the number of inequality and equality constraints
ifQ =0 resp ectively

_ xt)y+vi(t+1)
xi(t+1) = { B(y(rc/oud) if Qi #0
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Constrained Optimization Problems Ge;%;
Penalty Methods S

Constrained Optimization Problems Ge:g%; 26!2
Lagrangian Methods Sl ™

@ Optimization problem is reformulated as @ Define the Lagrangian for the constrained problem
@ ThelL ian:
minimize  F(x, t) = f(X,t) + Ap(X, t) © Lagrangian
Ng—+np
A is the penalty coefficient L(X, Mg, An) = F(X) + Z Agmgm(X Z Anmhm(X
p(x, t) is the (possibly) time-dependent penalty function m—1 m=ng+1
. . R
° 20W t}? find thle Sest penalty coeflicients? Ag € R™ and Ay € R™ are the Lagrangian multipliers
@ And the penalty” @ The new optimization problem (the primal problem):
p(x; Ay \ (x maximizey,x, L(X,Ag, An)
it Z m(0)Pm(Xi) subject to Agm >0, m=1,...,ng+ ny
where @ The vector x* that solves the primal problem, as well as the
. Lagrange multiplier vectors, A\; and Aj, can be found by solving
Pm(X;) = max{0, gm(x;)"} it me(t,....ng] the min-max problem,
! |Am(X;)|* fmelng+1,....ng+ny _ T |
minmax L(X, Ag, Ap) g
« is a positive constant, representing the power of @Q_@@%{y CIRG X AgAn b
Engelbrecht (University of Pretoria) Particle Swarm Optimization GECCO’14, 13/7/2014 81 Engelbrecht (University of Pretoria)
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Constrained Optimization Problems Gej%/ 261'4 Constrained Optimization Problems
Lagrangian Methods (cont)

Lagrangian Methods (cont)

@ A coevolutionary PSO approach to solve the above min-max

problem uses two swarms Create and initialize two swarms, S; and Sz, where Sy is

o Swarm S; uses fitness function IC:,;'-)cllarlnten&onal and S is ng + np dimensional;
f(x) = . rr;ax L(X, Ag, An) Run a PSO algorithm on swarm Si for. Sy.n; iterations;
9:AhES2 Re-evaluate S,.y;(t),Vi=1,...,Ss.ns;
) ) Run a PSO algorithm on swarm S, for S,.n; iterations;
@ Swarm S, uses fitness function Re-evaluate Sy.y;(t),Vi = 1 S, .ng;
. ’ ] — 9000y . 3
f(Ag: An) = mg] L(X, Ag: An) until stopping condition is true;
XE O,
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Constrained Optimization Problems

Formulate as a MOP

@ Reformulate constraints as additional sub-objective(s)
@ Solve using a multi-objective PSO

Engelbrecht (University of Pretoria) Particle Swarm Optimization

Multi-Objective Optimization

Definition

Multi-objective problem:

minimize  f(x)
subjectto gm(x) <0, m=1,...,ng
hm(X) =0, m=ng+1,...,ng+ np

X e [Xmina xmax]nx

f(x) = (f(X), B(X), ..., F, (X)) € O C R™

O is referred to as the objective space
The search space, S, is also referred to as the decision space

where
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Multi-Objective Optimization

Issues

@ Can PSO be used to simultaneously optimize more than one,
possibly conflicting objective?

@ How can PSO be used to find a set of solutions which optimally
balances the trade-offs among these conflicting objectives?

@ The task is to find a set of non-dominating solutions

@ Formal definition of domination:
A decision vector, x4 dominates a decision vector, x, (denoted by
X1 < X»), if and only if

@ Xy is not worse than X, in all objectives, i.e.
fr(X1) < f(X2),Vk =1,...,ng, and

@ X is strictly better than x, in at least one objective, i.e.
dk=1,...,n: fk(X1) < fk(Xg)
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Multi-Objective Optimization
Aggregation-based Methods

@ The objective is redefined as

minimize "0, wicfi(X)

subjectto gm(x) <0, m=1,...,ng
hm(X) =0, m=ng+1,...,ng+ np
X e [xmimxmax]nX
wg>0,k=1,...,n

where >0 L wi =1
@ Problem with getting the best values for wy
@ Has to be applied repeatedly to get more than one solution

&
‘ u

N
- "
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Multi-Objective Optimization ﬂ%}
Vector Evaluated PSO $

A multi-swarm approach:

@ Assume K sub-objectives

@ K sub-swarms are used, where each optimizes one of the
objectives

@ Need a knowledge transfer strategy (KTS) to transfer information
about best positions between sub-swarms

@ Exchanged information are via selection of global guides,
replacing the global best positions in the velocity updates

@ Standard KTS: the ring KTS

e Sub-swarms are arranged in a ring topology
e Global guide of swarm Sk is swarm Sic11) mod k
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Multi-Objective Optimization

Using Archives

Lett=0;
Initialize the swarm, S(t), and
archive, A(t);
repeat
Evaluate (S(t));
A(t + 1) < Update(S(t), A(t));

@ Objective of archive is to keep
track of all non-dominated
solutions

@ Non-dominated solutions
added to archive after each
iteration

S(t+1) +
@ Fixed-sized archives versus Generate(S(t), A(t));
unlimited sizes t=t+1;

@ Local versus global guides until stopping condition is true;

Engelbrecht (University of Pretoria)
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Multi-Objective Optimization & 2004
Vector Evaluated PSO Sl ™

@ Assume two objectives

Si.vi(t+1) = wS.v(t) + cirj(H)(S1.yj
+  canj()(S2.Ji(t) — Sy.x(t
So.vi(t+1) = wS.v(t) + c1rj(1)(S2.yj
+  car(1)(Sy.7(t) — S-xzi(1)

—~

t) - 5 .X,'j(t))
)
t) — Sa.x;(1))

where sub-swarm Sy evaluates individuals on the basis of
objective f;(x), and sub-swarm S, uses objective f(x)
@ Local guide selection:

o Local guide replaces the personal best
e Update personal best position only if the new particle position
dominates the previous personal best position

@ Alternative KTS: random
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More Complex Problems

@ Dynamically changing constraints, in

e static and dynamic environments
e single- and multi-objectives

@ Tracking multiple optima in dynamic environments
@ Dynamic multi-objective optimization problems
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