
Runtime Analysis of Evolutionary Algorithms:
Basic Introduction1

Per Kristian Lehre Pietro S. Oliveto
University of Nottingham University of She�eld

Nottingham NG8 1BB, UK She�eld S1 4DP, UK
PerKristian.Lehre@nottingham.ac.uk P.Oliveto@sheffield.ac.uk

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage, and that copies bear this notice and
the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the owner/author(s).
Copyright is held by the author/owner(s).
GECCO’14 Companion, July 12–16, 2014, Vancouver, BC, Canada.
ACM 978-1-4503-2662-9/14/07.

1For the latest version of these slides, see http://www.cs.nott.ac.uk/

˜

pkl/gecco2014.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Bio-sketch - Dr Per Kristian Lehre

Lecturer in the School of Computer Science, at the
University of Nottingham.
MSc and PhD in Computer Science from Norwegian
University of Science and Technology (NTNU).
Research on theoretical aspects of evolutionary algorithms
and other randomised search heuristics.
Editorial board member of Evolutionary Computation.
Guest editor for special issues of IEEE Transactions of
Evolutionary Computation and Theoretical Computer
Science.
Best paper awards at GECCO 2006, 2009, 2010, 2013, and
ICSTW 2008, nominations at CEC 2009, and GECCO 2014.
Coordinator of 2M euro SAGE EU project unifying
population genetics and EC theory.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Bio-sketch - Dr Pietro S. Oliveto

Vice-Chancellor Fellow in the Department of Computer
Science, at the University of she�eld.
Laurea Degree in Computer Science from the University if
Catania, Italy (2005).
PhD in Computer Science (2006-2009), EPSRC PhD+
Research Fellow (2009-2010), EPSRC Postdoctoral Fellow
in Theoretical Computer Science at the University of
Birmingham, UK
Research on theoretical aspects of evolutionary algorithms
and other randomised search heuristics.
Guest editor for special issues of Evolutionary Computation
(MIT Press, 2015) and Computer Science and Technology
(Springer, 2012).
Best paper awards at GECCO 2008 and ICARIS 2011 and
best paper nominations at CEC 2009, ECTA 2011 and
GECCO 2014.
Chair of IEEE CIS Task Force on Theoretical Foundations
of Bio-inspired Computation.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Aims and Goals of this Tutorial

This tutorial will provide an overview of
the goals of time complexity analysis of Evolutionary Algorithms (EAs)
the most common and e�ective techniques

You should attend if you wish to
theoretically understand the behaviour and performance of the search
algorithms you design
familiarise with the techniques used in the time complexity analysis of EAs
pursue research in the area

enable you or enhance your ability to
1 understand theoretically the behaviour of EAs on di�erent problems
2 perform time complexity analysis of simple EAs on common toy problems
3 read and understand research papers on the computational complexity of

EAs
4 have the basic skills to start independent research in the area
5 follow the other theory tutorials later on today

459

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Introduction to the theory of EAs

Evolutionary Algorithms and Computer Science

Goals of design and analysis of algorithms
1 correctness

“does the algorithm always output the correct solution?”

2 computational complexity
“how many computational resources are required?”

For Evolutionary Algorithms (General purpose)
1 convergence

“Does the EA find the solution in finite time?”

2 time complexity
“how long does it take to find the optimum?”

(time = n. of fitness function evaluations)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Introduction to the theory of EAs

Brief history

Theoretical studies of Evolutionary Algorithms (EAs), albeit few, have always
existed since the seventies [Goldberg, 1989];

Early studies were concerned with explaining the behaviour rather than
analysing their performance.

Schema Theory was considered fundamental;
First proposed to understand the behaviour of the simple GA
[Holland, 1992];
It cannot explain the performance or limit behaviour of EAs;
Building Block Hypothesis was controversial [Reeves and Rowe, 2002];

No Free Lunch [Wolpert and Macready, 1997]
Over all functions...

Convergence results appeared in the nineties [Rudolph, 1998];
Related to the time limit behaviour of EAs.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Convergence analysis of EAs

Convergence
Definition

Ideally the EA should find the solution in finite steps with probability 1
(visit the global optimum in finite time);
If the solution is held forever after, then the algorithm converges to the
optimum!

Conditions for Convergence ([Rudolph, 1998])
1

There is a positive probability to reach any point in the search space from

any other point

2
The best found solution is never removed from the population (elitism)

Canonical GAs using mutation, crossover and proportional selection Do
Not converge!
Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

Most EAs visit the global optimum in finite time (RLS does not!)
How much time?

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Convergence analysis of EAs

Convergence
Definition

Ideally the EA should find the solution in finite steps with probability 1
(visit the global optimum in finite time);
If the solution is held forever after, then the algorithm converges to the
optimum!

Conditions for Convergence ([Rudolph, 1998])
1

There is a positive probability to reach any point in the search space from

any other point

2
The best found solution is never removed from the population (elitism)

Canonical GAs using mutation, crossover and proportional selection Do
Not converge!
Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

Most EAs visit the global optimum in finite time (RLS does not!)
How much time?

460

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Convergence analysis of EAs

Convergence
Definition

Ideally the EA should find the solution in finite steps with probability 1
(visit the global optimum in finite time);
If the solution is held forever after, then the algorithm converges to the
optimum!

Conditions for Convergence ([Rudolph, 1998])
1

There is a positive probability to reach any point in the search space from

any other point

2
The best found solution is never removed from the population (elitism)

Canonical GAs using mutation, crossover and proportional selection Do
Not converge!
Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

Most EAs visit the global optimum in finite time (RLS does not!)
How much time?

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Computational complexity of EAs

Computational Complexity of EAs

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Computational complexity of EAs

Computational Complexity of EAs

Generally means predicting the resources the algorithm requires:
Usually the computational time: the number of primitive steps;
Usually grows with size of the input;
Usually expressed in asymptotic notation;

Exponential runtime: Ine�cient algorithm
Polynomial runtime: “E�cient” algorithm

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Computational complexity of EAs

Computational Complexity of EAs

However (EAs):
1 In practice the time for a fitness function evaluation is much higher than

the rest;
2 EAs are randomised algorithms

They do not perform the same operations even if the input is the same!
They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable Tf .
We are interested in:

1 Estimating E(Tf), the expected runtime of the EA for f ;
2 Estimating p(Tf Æ t), the success probability of the EA in t steps for f .

461

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Computational complexity of EAs

Asymptotic notation

f (n) œ O(g(n)) ≈∆ ÷ constants c, n
0

> 0 st. 0 Æ f (n)Æcg(n) ’n Ø n
0

f (n) œ �(g(n)) ≈∆ ÷ constants c, n
0

> 0 st. 0 Æ cg(n)Æf (n) ’n Ø n
0

f (n) œ �(g(n)) ≈∆ f (n) œ O(g(n)) and f (n) œ �(g(n))

f (n) œ o(g(n)) ≈∆ lim

næŒ

f (n)

g(n)

= 0

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Computational complexity of EAs

Goals

Understand how the runtime depends on:
parameters of the problem
parameters of the algorithm

In order to:
explain the success or the failure of these methods in practical applications,
understand which problems are optimized (or approximated) e�ciently by
a given algorithm and which are not
guide the choice of the best algorithm for the problem at hand,
determine the optimal parameter settings,
aid the algorithm design.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;
p = 1/n is generally considered a good parameter setting
[Bäck, 1993, Droste et al., 1998];
By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;

p = 1/n is generally considered a good parameter setting
[Bäck, 1993, Droste et al., 1998];
By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)

462

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;
p = 1/n is generally considered a good parameter setting
[Bäck, 1993, Droste et al., 1998];

By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;
p = 1/n is generally considered a good parameter setting
[Bäck, 1993, Droste et al., 1998];
By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

Given x, how many bits will flip in expectation?
E [X] = E [X

1

+ X
2

+ · · · + Xn] = E [X
1

] + E [X
2

] + · · · + E [Xn] =

(E [Xi] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?
Given x, how many bits will flip in expectation?

E [X] = E [X
1

+ X
2

+ · · · + Xn] = E [X
1

] + E [X
2

] + · · · + E [Xn] =

(E [Xi] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1

463

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?
Given x, how many bits will flip in expectation?

E [X] = E [X
1

+ X
2

+ · · · + Xn] = E [X
1

] + E [X
2

] + · · · + E [Xn] =

(E [Xi] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?
Given x, how many bits will flip in expectation?

E [X] = E [X
1

+ X
2

+ · · · + Xn] = E [X
1

] + E [X
2

] + · · · + E [Xn] =

(E [Xi] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?
Given x, how many bits will flip in expectation?

E [X] = E [X
1

+ X
2

+ · · · + Xn] = E [X
1

] + E [X
2

] + · · · + E [Xn] =

(E [Xi] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

464

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

465

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Running Example - Functions of Unitation

g(x) = f

A
nÿ

i=1

xi

B
where f : R æ R

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Running Example - Functions of Unitation

g(x) = f

A
nÿ

i=1

xi

B
where f : R æ R

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Running Example - Functions of Unitation

f (x) =

rÿ

i=1

fi(x)

466

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Linear Unitation Block

f (|x|) =

;
a|x| + b if k < n ≠ |x| Æ k + m
0 otherwise.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Toy Problem Framework - Gap

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Toy Problem Framework - Plateau

f (|x|) =

;
a if k < n ≠ |x| Æ k + m
0 otherwise.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General properties

Upper bound on the total runtime

f (x) =

rÿ

i=1

fi(x)

Assumptions
r sub-functions f

1

, f
2

, . . . , fr
Ti time to optimise sub-function fi

the evolutionary algorithm is elitist

By linearity of expectation, an upper bound on the expected runtime is

E [T] Æ E

C
rÿ

i=1

Ti

D
=

rÿ

i=1

E [Ti] .

467

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

The gap sub-problem

Gap block: upper and lower bounds

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.

The probability p of optimising a gap block of length m at position k is

1m + k
nm

2m
1

e Æ

3
m + k

m

4 1
1

n

2m
1

e Æ p Æ
3

m + k
m

4 1
1

n

2m

Æ
3

(m + k)e
nm

4m

The expected time to optimise the gap block is 1/p

3
nm

(m + k)e

4m

Æ

3
m + k

m

4≠1

nm Æ E [T] Æ enm
3

m + k
m

4≠1

Æ e
1 nm

m + k

2m

using
! n

k

"k Æ
!n

k

"
Æ

! en
k

"k for k Ø 1.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

The gap sub-problem

Gap block: upper and lower bounds

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.

The probability p of optimising a gap block of length m at position k is
1m + k

nm

2m
1

e Æ
3

m + k
m

4 1
1

n

2m
1

e Æ p Æ
3

m + k
m

4 1
1

n

2m
Æ

3
(m + k)e

nm

4m

The expected time to optimise the gap block is 1/p
3

nm
(m + k)e

4m

Æ
3

m + k
m

4≠1

nm Æ E [T] Æ enm
3

m + k
m

4≠1

Æ e
1 nm

m + k

2m

using
! n

k

"k Æ
!n

k

"
Æ

! en
k

"k for k Ø 1.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Tail Inequalities

E [X]

Tail inequalities:
The expectation can often be estimated easily.
Would like to know the probability of deviating far from expectation,
i.e., the “tails” of the distribution
Tail inequalities give bounds on the tails given the expectation.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X]

t .

Number of bits that are flipped in a mutation step
If E [X] = 1, then Pr(X Ø 2) Æ E [X] /2 = 1/2.

Number of one-bits after initialisation
If E [X] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.

468

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X]

t .

Number of bits that are flipped in a mutation step
If E [X] = 1, then Pr(X Ø 2) Æ E [X] /2 = 1/2.

Number of one-bits after initialisation
If E [X] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X]

t .

Number of bits that are flipped in a mutation step
If E [X] = 1, then Pr(X Ø 2) Æ E [X] /2 = 1/2.

Number of one-bits after initialisation
If E [X] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X]

t .

Number of bits that are flipped in a mutation step
If E [X] = 1, then Pr(X Ø 2) Æ E [X] /2 = 1/2.

Number of one-bits after initialisation
If E [X] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X]

t .

Number of bits that are flipped in a mutation step
If E [X] = 1, then Pr(X Ø 2) Æ E [X] /2 = 1/2.

Number of one-bits after initialisation
If E [X] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.

469

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bounds

Let X
1

, X
2

, . . . Xn be independent Poisson trials each with probability pi ;
For X =

qn
i=1

Xi the expectation is E(X) =

qn
i=1

pi .

Theorem (Cherno� Bounds)

1
Pr(X Æ (1 ≠ ”)E [X]) Æ exp

1
≠E[X]”2

2

2
for 0 Æ ” Æ 1.

2
Pr(X > (1 + ”)E [X]) Æ

1
e”

(1+”)

1+”

2E[X]

for ” > 0.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E [X] = n/2,
(we fix ” = 1/3 æ (1 + ”)E [X] = (2/3)n); then:

Pr(X > (2/3)n) Æ
1

e1/3

(4/3)

4/3

2n/2

= c≠n/2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bounds

Let X
1

, X
2

, . . . Xn be independent Poisson trials each with probability pi ;
For X =

qn
i=1

Xi the expectation is E(X) =

qn
i=1

pi .

Theorem (Cherno� Bounds)

1
Pr(X Æ (1 ≠ ”)E [X]) Æ exp

1
≠E[X]”2

2

2
for 0 Æ ” Æ 1.

2
Pr(X > (1 + ”)E [X]) Æ

1
e”

(1+”)

1+”

2E[X]

for ” > 0.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E [X] = n/2,
(we fix ” = 1/3 æ (1 + ”)E [X] = (2/3)n); then:

Pr(X > (2/3)n) Æ
1

e1/3

(4/3)

4/3

2n/2

= c≠n/2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bounds

Let X
1

, X
2

, . . . Xn be independent Poisson trials each with probability pi ;
For X =

qn
i=1

Xi the expectation is E(X) =

qn
i=1

pi .

Theorem (Cherno� Bounds)

1
Pr(X Æ (1 ≠ ”)E [X]) Æ exp

1
≠E[X]”2

2

2
for 0 Æ ” Æ 1.

2
Pr(X > (1 + ”)E [X]) Æ

1
e”

(1+”)

1+”

2E[X]

for ” > 0.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E [X] = n/2,

(we fix ” = 1/3 æ (1 + ”)E [X] = (2/3)n); then:

Pr(X > (2/3)n) Æ
1

e1/3

(4/3)

4/3

2n/2

= c≠n/2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bounds

Let X
1

, X
2

, . . . Xn be independent Poisson trials each with probability pi ;
For X =

qn
i=1

Xi the expectation is E(X) =

qn
i=1

pi .

Theorem (Cherno� Bounds)

1
Pr(X Æ (1 ≠ ”)E [X]) Æ exp

1
≠E[X]”2

2

2
for 0 Æ ” Æ 1.

2
Pr(X > (1 + ”)E [X]) Æ

1
e”

(1+”)

1+”

2E[X]

for ” > 0.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E [X] = n/2,
(we fix ” = 1/3 æ (1 + ”)E [X] = (2/3)n); then:

Pr(X > (2/3)n) Æ
1

e1/3

(4/3)

4/3

2n/2

= c≠n/2

470

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bound Simple Application

Bitstring of length n = 100

Pr(Xi) = 1/2 and E(X) = np = 100/2 = 50.

What is the probability to have at least 75 1-bits?

Markov: Pr(X Ø 75) Æ 50

75

=

2

3

Cherno�: Pr(X Ø (1 + 1/2)50) Æ
1 Ô

e
(3/2)

3/2

2
50

< 0.0045

Truth: Pr(X Ø 75) =

q
100

i=75

!
100

i

"
2

≠100 < 0.000000282

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bound Simple Application

Bitstring of length n = 100

Pr(Xi) = 1/2 and E(X) = np = 100/2 = 50.
What is the probability to have at least 75 1-bits?

Markov: Pr(X Ø 75) Æ 50

75

=

2

3

Cherno�: Pr(X Ø (1 + 1/2)50) Æ
1 Ô

e
(3/2)

3/2

2
50

< 0.0045

Truth: Pr(X Ø 75) =

q
100

i=75

!
100

i

"
2

≠100 < 0.000000282

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Cherno� bounds

Cherno� Bound Simple Application

Bitstring of length n = 100

Pr(Xi) = 1/2 and E(X) = np = 100/2 = 50.
What is the probability to have at least 75 1-bits?

Markov: Pr(X Ø 75) Æ 50

75

=

2

3

Cherno�: Pr(X Ø (1 + 1/2)50) Æ
1 Ô

e
(3/2)

3/2

2
50

< 0.0045

Truth: Pr(X Ø 75) =

q
100

i=75

!
100

i

"
2

≠100 < 0.000000282

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Onemax

Onemax(x) := x
1

+ x
2

+ · · · + xn =

nÿ

i=1

xi

|x|

f (x)

1

1

2

2

n

n

471

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Fitness-based Partitions

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Definition
A tuple (A

1

, A
2

, . . . , Am) is an
f -based partition of f : X æ R if

1 A
1

fi A
2

fi · · · fi Am = X
2 Ai fl Aj = ÿ for i ”= j
3 f (A

1

) < f (A
2

) < · · · < f (Am)

4 f (Am) = maxx f (x)

Example
Partition of Onemax into n + 1 levels

Aj := {x œ {0, 1}n | Onemax(x) = j}

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Artificial Fitness Levels - Upper bounds

Fitness

A
1

A
2

A
3

...

Am≠1

Am

si : prob. of starting in Ai

ui : prob. of jumping from Ai to any Aj , i < j.
Ti : Time to jump from Ai to any Aj , i < j.

Expected runtime

E [T] Æ
m≠1ÿ

i=1

siE

C
m≠1ÿ

j=i

Tj

D

=
m≠1ÿ

i=1

si

m≠1ÿ

j=i

E [Tj]

=
m≠1ÿ

i=1

si

m≠1ÿ

j=i

1/uj Æ
m≠1ÿ

j=i

1/uj .

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

(1+1) EA on Onemax

Theorem
The expected runtime of (1+1) EA on Onemax is O(n ln n).

Proof

The current solution is in level Aj if it has j ones (hence n ≠ j zeroes).
To reach a higher fitness level it is su�cient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

uj Ø (n ≠ j) 1

n

1
1 ≠ 1

n

2n≠1

Ø n ≠ j
en

Then by Artificial Fitness Levels

E [T] Æ
m≠1ÿ

j=0

1/uj Æ
n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

(1+1) EA on Onemax

Theorem
The expected runtime of (1+1) EA on Onemax is O(n ln n).

Proof
The current solution is in level Aj if it has j ones (hence n ≠ j zeroes).

To reach a higher fitness level it is su�cient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

uj Ø (n ≠ j) 1

n

1
1 ≠ 1

n

2n≠1

Ø n ≠ j
en

Then by Artificial Fitness Levels

E [T] Æ
m≠1ÿ

j=0

1/uj Æ
n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)

472

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

(1+1) EA on Onemax

Theorem
The expected runtime of (1+1) EA on Onemax is O(n ln n).

Proof
The current solution is in level Aj if it has j ones (hence n ≠ j zeroes).
To reach a higher fitness level it is su�cient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

uj Ø (n ≠ j) 1

n

1
1 ≠ 1

n

2n≠1

Ø n ≠ j
en

Then by Artificial Fitness Levels

E [T] Æ
m≠1ÿ

j=0

1/uj Æ
n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

(1+1) EA on Onemax

Theorem
The expected runtime of (1+1) EA on Onemax is O(n ln n).

Proof
The current solution is in level Aj if it has j ones (hence n ≠ j zeroes).
To reach a higher fitness level it is su�cient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

uj Ø (n ≠ j) 1

n

1
1 ≠ 1

n

2n≠1

Ø n ≠ j
en

Then by Artificial Fitness Levels

E [T] Æ
m≠1ÿ

j=0

1/uj Æ
n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Linear Unitation Block: Upper bound

Theorem
The expected runtime of the (1+1)-EA for a linear

block is O(n ln((m + k)/k)).

Proof

Let i := n ≠ j be the number of 0-bits in block Aj

The probability is ui Ø i · 1

n

!
1 ≠ 1

n

"n≠1 Ø
! i

en

"

Hence,
!

1

ui

"
Æ

! en
i

"

Then (Artificial Fitness Levels):

E(T) Æ
k+mÿ

i=k+1

en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Linear Unitation Block: Upper bound

Theorem
The expected runtime of the (1+1)-EA for a linear

block is O(n ln((m + k)/k)).

Proof
Let i := n ≠ j be the number of 0-bits in block Aj

The probability is ui Ø i · 1

n

!
1 ≠ 1

n

"n≠1 Ø
! i

en

"

Hence,
!

1

ui

"
Æ

! en
i

"

Then (Artificial Fitness Levels):

E(T) Æ
k+mÿ

i=k+1

en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2

473

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Linear Unitation Block: Upper bound

Theorem
The expected runtime of the (1+1)-EA for a linear

block is O(n ln((m + k)/k)).

Proof
Let i := n ≠ j be the number of 0-bits in block Aj

The probability is ui Ø i · 1

n

!
1 ≠ 1

n

"n≠1 Ø
! i

en

"

Hence,
!

1

ui

"
Æ

! en
i

"

Then (Artificial Fitness Levels):

E(T) Æ
k+mÿ

i=k+1

en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL method for upper bounds

Linear Unitation Block: Upper bound

Theorem
The expected runtime of the (1+1)-EA for a linear

block is O(n ln((m + k)/k)).

Proof
Let i := n ≠ j be the number of 0-bits in block Aj

The probability is ui Ø i · 1

n

!
1 ≠ 1

n

"n≠1 Ø
! i

en

"

Hence,
!

1

ui

"
Æ

! en
i

"

Then (Artificial Fitness Levels):

E(T) Æ
k+mÿ

i=k+1

en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for lower bounds

Artificial Fitness Levels - Lower bounds2

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Theorem ([Sudholt, 2010])
Let

si : prob. of starting in Ai

ui : prob. of leaving Ai , and

pij : prob. of jumping from Ai to Aj .

If there exists a ‰ œ [0, 1) st. for ’i < j

pij Ø ‰

m≠1ÿ

k=j

pik ,

then

E [T] Ø ‰

m≠1ÿ

i=1

si

m≠1ÿ

j=i

1

uj
.

2A di�erent version of the theorem is presented.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for lower bounds

(1+1) EA lower bound for Onemax

Fitness level Ai := {x œ {0, 1}n | Onemax(x) = i}

x =

i˙ ˝¸ ˚
1111111111111111111111111

n≠i˙ ˝¸ ˚
000000000000000000000 œ Ai

Probability pij of jumping to level j > i and beyond

pij Ø
3

n ≠ i
j ≠ i

4 1
1

n

2j≠i 1
1 ≠ 1

n

2n≠(j≠i)

n≠1ÿ

k=j

pik Æ
3

n ≠ i
j ≠ i

4 1
1

n

2j≠i

Hence, for ‰ = 1/e

pij Ø
1

1 ≠ 1

n

2n≠(j≠i)

n≠1ÿ

k=j

pik Ø ‰

n≠1ÿ

k=j

pik

474

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for lower bounds

(1+1) EA lower bound for Onemax

Theorem
The expected runtime of the (1+1) EA for Onemax is �(n ln n).

Probability ui of any improvement

ui Æ n ≠ i
n

Assuming that s
0

= 1, we get

E [T] Ø
1

1

e

2 n≠1ÿ

i=0

1

ui

Ø
1

1

e

2 n≠1ÿ

i=0

n
n ≠ i =

1n
e

2 nÿ

i=1

1

i = �(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for lower bounds

Linear Block: Lower Bound

Theorem
The expected runtime to finish a linear block of length m starting at k + m
0-bits is �(n ln((m + k)/k)).

For 0 Æ i Æ m, define Ai := {x : n ≠ |x| = k + m ≠ i}. Note that

pij =

3
k + m ≠ i

j ≠ i

4 1
1

n

2j≠i 1
1 ≠ 1

n

2n≠(j≠i)

m≠1ÿ

k=j

pik Æ
3

k + m ≠ i
j ≠ i

4 1
1

n

2j≠i

Therefore,

pij Ø
1

1 ≠ 1

n

2n≠(j≠i)

m≠1ÿ

k=j

pik Ø
1

1

e

2 m≠1ÿ

k=j

pik

and assuming that s
0

= 1, we get

E [T] Ø
1

1

e

2 m≠1ÿ

i=0

1

ui
Ø

1
1

e

2 m≠1ÿ

i=0

n
m + k ≠ i =

1n
e

2 A
m+kÿ

i=1

1

i ≠
kÿ

i=1

1

i

B

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Advanced: Fitness levels for non-elitist populations

P

t+1

P

t

x

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to ⁄ do

Sample i-th parent x according to psel(Pt , f)

Sample i-th o�spring Pt+1

(i) according to pvar(x)

end for
end for

A general algorithmic scheme for non-elitistic EAs
f : X æ R fitness function over arbitrary finite search space X
psel selection mechanism (e.g. (µ, ⁄)-selection)
pvar variation operator (e.g. mutation)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Advanced: Fitness Levels for non-Elitist Populations3

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Theorem ([Lehre, 2011a])

If exists ”, “ú, s
1

, ..., sm , sú, p
0

œ (0, 1) st.

(C1) pvar
!
y œ A+

j | x œ Aj
"

Ø sj Ø sú
upgrade probability sj

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

Ø p
0

resting probability p
0

(C3) —(“) > “(1 + ”)/p
0

for all “ < “ú
“high” selective pressure

(C4) ⁄ > cÕ
ln(m/sú) for some const. cÕ

“large” population size

then for a constant c > 0

E [T] Æ c

A
m⁄2

+

m≠1ÿ

j=1

1

sj

B

3See this year’s GECCO theory track for an improved version! [Dang and Lehre, 2014].

475

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Advanced: Fitness Levels for non-Elitist Populations3

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Theorem ([Lehre, 2011a])

If exists ”, “ú, s
1

, ..., sm , sú, p
0

œ (0, 1) st.

(C1) pvar
!
y œ A+

j | x œ Aj
"

Ø sj Ø sú
upgrade probability sj

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

Ø p
0

resting probability p
0

(C3) —(“) > “(1 + ”)/p
0

for all “ < “ú
“high” selective pressure

(C4) ⁄ > cÕ
ln(m/sú) for some const. cÕ

“large” population size

then for a constant c > 0

E [T] Æ c

A
m⁄2

+

m≠1ÿ

j=1

1

sj

B

3See this year’s GECCO theory track for an improved version! [Dang and Lehre, 2014].

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Example: (µ, ⁄) EA on LeadingOnes

x =

Leading 1-bits.˙ ˝¸ ˚
1111111111111111 0

Random bitstring.˙ ˝¸ ˚
ú ú ú ú ú ú ú ú ú ú ú ú ú ú úú .

First 0-bit.

LeadingOnes(x) =

nÿ

i=1

iŸ

j=1

xi

Theorem
If ⁄/µ > e and ⁄ > c ln n, then the expected runtime of (µ,⁄) EA on

LeadingOnes is O(n⁄2

+ n2

).

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Measuring Selective Pressure

Definition

Let x(1), x(2), . . . , x(⁄) be the individuals in a population P œ X ⁄, sorted
according to a fitness function f : X æ R, i.e.

f
!
x(1)

"
Ø f

!
x(2)

"
Ø · · · Ø f

!
x(⁄)

"
.

For any “ œ (0, 1), the cumulative selection probability of psel is

—(“) := Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f)

"

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Cumulative Selection Prob. - Example

(µ, ⁄)-selection

“⁄

⁄

µ

f

psel

—(“) = Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f)

"

Ø “⁄
µ

if “⁄ Æ µ

476

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Cumulative Selection Prob. - Example (µ, ⁄)-selection

“⁄

⁄

µ

f

psel

—(“) = Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f)

"

Ø “⁄
µ

if “⁄ Æ µ

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Example Application4

(µ,⁄) EA with bit-wise mutation rate ‰/n on LeadingOnes

Partition of fitness function into m := n + 1 levels

Aj := {x œ {0, 1}n | x
1

= x
2

= · · · = xj≠1

= 1 · xj = 0}

If ⁄/µ > e‰ and ⁄ > cÕÕ
ln(n) then

(C1) pvar
!
y œ A+

j | x œ Aj
"

= �(1/n)

=: sj =: sú

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

¥ e≠‰

=: p
0

(C3) —(“) Ø “⁄/µ > “e‰

= “/p
0

(C4) ⁄ > cÕÕ
ln(n)

> c ln(m/sú
)

then E [T] = O(m⁄2

+

qm
j=1

s≠1

j) = O(n⁄2

+ n2

)

4Calculations on this slide are approximate. See [Lehre, 2011a] for exact calculations.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Example Application4

(µ,⁄) EA with bit-wise mutation rate ‰/n on LeadingOnes

Partition of fitness function into m := n + 1 levels

Aj := {x œ {0, 1}n | x
1

= x
2

= · · · = xj≠1

= 1 · xj = 0}

If ⁄/µ > e‰ and ⁄ > cÕÕ
ln(n) then

(C1) pvar
!
y œ A+

j | x œ Aj
"

= �(1/n) =: sj =: sú

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

¥ e≠‰
=: p

0

(C3) —(“) Ø “⁄/µ > “e‰
= “/p

0

(C4) ⁄ > cÕÕ
ln(n) > c ln(m/sú

)

then E [T] = O(m⁄2

+

qm
j=1

s≠1

j) = O(n⁄2

+ n2

)

4Calculations on this slide are approximate. See [Lehre, 2011a] for exact calculations.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Artificial Fitness Levels: Conclusions

It’s a powerful general method to obtain (often) tight upper bounds on
the runtime of simple EAs;

For o�spring populations tight bounds can often be achieved with the
general method;

There exists a variant of artificial fitness levels for populations
[Lehre, 2011b].

477

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

What is Drift5 Analysis?

Prediction of the long term behaviour of a process X
hitting time, stability, occupancy time etc.

from properties of �.

5NB! (Stochastic) drift is a di�erent concept than genetic drift in population genetics.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

What is Drift5 Analysis?

Prediction of the long term behaviour of a process X
hitting time, stability, occupancy time etc.

from properties of �.
5NB! (Stochastic) drift is a di�erent concept than genetic drift in population genetics.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Additive Drift Theorem

Additive Drift Theorem

b0

Yk = d(Xk)

Á

(C1+) ’k E [Yk+1

≠ Yk | Yk > 0] Æ ≠Á

(C1≠) ’k E [Yk+1

≠ Yk | Yk > 0] Ø ≠Á

Theorem ([He and Yao, 2001, Jägersküpper, 2007, Jägersküpper, 2008])
Given a stochastic process Y

1

, Y
2

, . . . over an interval [0, b] µ R.

Define T := min{k Ø 0 | Yk = 0}, and assume E [T] < Œ.

If (C1+) holds for an Á > 0, then E [T | Y
0

] Æ b/Á.

If (C1≠) holds for an Á > 0, then E [T | Y
0

] Ø Y
0

/Á.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Additive Drift Theorem

Additive Drift Theorem

b0

Yk = d(Xk)

Á

(C1+) ’k E [Yk+1

≠ Yk | Yk > 0] Æ ≠Á

(C1≠) ’k E [Yk+1

≠ Yk | Yk > 0] Ø ≠Á

Theorem ([He and Yao, 2001, Jägersküpper, 2007, Jägersküpper, 2008])
Given a stochastic process Y

1

, Y
2

, . . . over an interval [0, b] µ R.

Define T := min{k Ø 0 | Yk = 0}, and assume E [T] < Œ.

If (C1+) holds for an Á > 0, then E [T | Y
0

] Æ b/Á.

If (C1≠) holds for an Á > 0, then E [T | Y
0

] Ø Y
0

/Á.

478

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Additive Drift Theorem

Plateau Block Function: Upper Bound

Let k > n/2 + ‘n.

PlateauBlock¸(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem
The expected time for the (1+1)-EA to optimise the Plateau function is O(m).

Proof
Let Xt be the number of 0-bits at time t. Then the drift is

E(�(t) Ø Xt

n ≠ n ≠ Xt

n =

2Xt

n ≠ 1 Ø 2k
n ≠ 1

Hence, by drift analysis

E [T] Æ m
(2k)/n ≠ 1

=

mn
2k ≠ n = O(m)

where the last equality holds as long as k > n/2 + ‘n

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Additive Drift Theorem

Plateau Block Function: Lower Bound

Let k > n/2 + ‘n.

PlateauBlock¸(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem
The expected time for the (1+1)-EA to optimise the Plateau function is �(m).

Proof
Let Xt be the number of 0-bits at time t. Then the drift is

E(�(t) =

Xt

n ≠ n ≠ Xt

n =

2Xt

n ≠ 1 Æ 2(m + k)

n ≠ 1

Hence, by drift analysis

E [T] Ø m
2(m + k)/n ≠ 1

=

mn
2(m + k) ≠ n = �(m)

where the last equality holds as long as k > n/2 + ‘n

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
1 Let d(Xt) = i where i is the number of zeroes in the bitstring;

2 Note that d(Xt) ≠ d(Xt+1

) Ø 0 for all t;
3 The distance decreases by 1 as long as a 0 is flipped and the ones remain

unchanged:

E(�(t)) = E [d(Xt)≠d(Xt+1

) | Xt] Ø 1 · i
n

3
1≠ 1

n

4n≠1

Ø i
en Ø 1

en =: ”

4 The expected initial distance is E(d(X
0

)) = n/2

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ E [(d(X
0

)]

”
Æ n/2

1/(en)

= e/2 · n2

= O(n2

)

We need a di�erent distance function!

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
1 Let d(Xt) = i where i is the number of zeroes in the bitstring;
2 Note that d(Xt) ≠ d(Xt+1

) Ø 0 for all t;
3 The distance decreases by 1 as long as a 0 is flipped and the ones remain

unchanged:

E(�(t)) = E [d(Xt)≠d(Xt+1

) | Xt] Ø 1 · i
n

3
1≠ 1

n

4n≠1

Ø i
en Ø 1

en =: ”

4 The expected initial distance is E(d(X
0

)) = n/2

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ E [(d(X
0

)]

”
Æ n/2

1/(en)

= e/2 · n2

= O(n2

)

We need a di�erent distance function!

479

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
1 Let d(Xt) = i where i is the number of zeroes in the bitstring;
2 Note that d(Xt) ≠ d(Xt+1

) Ø 0 for all t;
3 The distance decreases by 1 as long as a 0 is flipped and the ones remain

unchanged:

E(�(t)) = E [d(Xt)≠d(Xt+1

) | Xt] Ø 1 · i
n

3
1≠ 1

n

4n≠1

Ø i
en Ø 1

en =: ”

4 The expected initial distance is E(d(X
0

)) = n/2

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ E [(d(X
0

)]

”
Æ n/2

1/(en)

= e/2 · n2

= O(n2

)

We need a di�erent distance function!

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

1 Let d(Xt) = ln(i + 1) where i is the number of zeroes in the bitstring;

2 For x Ø 1, it holds that ln(1 + 1/x) Ø 1/x ≠ 1/(2x2

) Ø 1/(2x).
3 The distance decreases as long as a 0 is flipped and the ones remain

unchanged

E [�(t)] = E [d(Xt) ≠ d(Xt+1

) | d(Xt) = i Ø 1]

Ø i
en (ln(i + 1) ≠ ln(i)) =

i
en ln

1
1 +

1

i

2

Ø i
en

1

2i =

1

2en =: ”.

4 The initial distance is d(X
0

) Æ ln(n + 1)

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ d(X
0

)

”
Æ ln(n + 1)

1/(2en)

= O(n ln n)

If the amount of progress depends on the distance from the optimum we need
to use a logarithmic distance!

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

1 Let d(Xt) = ln(i + 1) where i is the number of zeroes in the bitstring;
2 For x Ø 1, it holds that ln(1 + 1/x) Ø 1/x ≠ 1/(2x2

) Ø 1/(2x).
3 The distance decreases as long as a 0 is flipped and the ones remain

unchanged

E [�(t)] = E [d(Xt) ≠ d(Xt+1

) | d(Xt) = i Ø 1]

Ø i
en (ln(i + 1) ≠ ln(i)) =

i
en ln

1
1 +

1

i

2

Ø i
en

1

2i =

1

2en =: ”.

4 The initial distance is d(X
0

) Æ ln(n + 1)

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ d(X
0

)

”
Æ ln(n + 1)

1/(2en)

= O(n ln n)

If the amount of progress depends on the distance from the optimum we need
to use a logarithmic distance!

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Drift Analysis for Onemax

1 Let d(Xt) = ln(i + 1) where i is the number of zeroes in the bitstring;
2 For x Ø 1, it holds that ln(1 + 1/x) Ø 1/x ≠ 1/(2x2

) Ø 1/(2x).
3 The distance decreases as long as a 0 is flipped and the ones remain

unchanged

E [�(t)] = E [d(Xt) ≠ d(Xt+1

) | d(Xt) = i Ø 1]

Ø i
en (ln(i + 1) ≠ ln(i)) =

i
en ln

1
1 +

1

i

2

Ø i
en

1

2i =

1

2en =: ”.

4 The initial distance is d(X
0

) Æ ln(n + 1)

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ d(X
0

)

”
Æ ln(n + 1)

1/(2en)

= O(n ln n)

If the amount of progress depends on the distance from the optimum we need
to use a logarithmic distance!

480

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Multiplicative Drift Theorem

Theorem (Multiplicative Drift, [Doerr et al., 2010a])
Let {Xt}tœN0 be random variables describing a Markov process over a finite

state space S ™ R. Let T be the random variable that denotes the earliest

point in time t œ N
0

such that Xt = 0.

If there exist ”, c
min

, c
max

> 0 such that

1 E [Xt ≠ Xt+1

| Xt] Ø ”Xt and

2 c
min

Æ Xt Æ c
max

,

for all t < T , then

E [T] Æ 2

”
· ln

1
1 +

c
max

c
min

2

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

(1+1)-EA Analysis for Onemax

Theorem
The expected time for the (1+1)-EA to optimise Onemax is O(n ln n)

Proof

Distance: let Xt be the number of zeroes in step t;
E [Xt+1

|Xt] Æ Xt ≠ 1 · Xt
en = Xt ·

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt = i] Ø Xt ≠ Xt ·
!
1 ≠ 1

en

"
= Xt/(en) (” = 1/(en))

1 = c
min

Æ Xt Æ c
max

= n
Hence,

E [T] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + n) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

(1+1)-EA Analysis for Onemax

Theorem
The expected time for the (1+1)-EA to optimise Onemax is O(n ln n)

Proof
Distance: let Xt be the number of zeroes in step t;
E [Xt+1

|Xt] Æ Xt ≠ 1 · Xt
en = Xt ·

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt = i] Ø Xt ≠ Xt ·
!
1 ≠ 1

en

"
= Xt/(en) (” = 1/(en))

1 = c
min

Æ Xt Æ c
max

= n
Hence,

E [T] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + n) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Linear Unitation Block: Upper Bound

Theorem
The expected time for the (1+1)-EA to optimise

the Linear Unitation Block is O(n ln((m + k)/k))

Proof

Distance: let i be the number of zeroes;
E [Xt+1

|Xt] Æ Xt ≠ 1 · Xt
en = Xt

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt] Ø Xt ≠ Xt
!
1 ≠ 1

en

"
=

1

en Xt (” :=

1

en)
k = c

min

Æ Xt Æ c
max

= m + k
Hence,

E [T] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + (m + k)/k) = O(n ln((m + k)/k))

481

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Linear Unitation Block: Upper Bound

Theorem
The expected time for the (1+1)-EA to optimise

the Linear Unitation Block is O(n ln((m + k)/k))

Proof
Distance: let i be the number of zeroes;
E [Xt+1

|Xt] Æ Xt ≠ 1 · Xt
en = Xt

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt] Ø Xt ≠ Xt
!
1 ≠ 1

en

"
=

1

en Xt (” :=

1

en)
k = c

min

Æ Xt Æ c
max

= m + k
Hence,

E [T] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + (m + k)/k) = O(n ln((m + k)/k))

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Simplified Drift Theorem

target
a b

drift away from target

no large jumps
towards target

start

Theorem (Simplified Negative-Drift Theorem, [Oliveto and Witt, 2011])

Suppose there exist three constants ”,‘,r such that for all t Ø 0:

1 E(�t(i)) Ø ‘ for a < i < b,

2
Prob(|�t(i)| = j) Æ 1

(1+”)

j≠r for i > a and j Ø 1.

Then

Prob(Tú Æ 2

cú
(b≠a)

) = 2

≠�(b≠a)

.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Needle in a Haystack

Theorem (Oliveto,Witt, Algorithmica 2011)

Let ÷ > 0 be constant. Then there is a constant c > 0 such that with

probability 1 ≠ 2

≠�(n)

the (1+1)-EA on Needle creates only search points

with at most n/2 + ÷n ones in 2

cn
steps.

Proof Idea
By Cherno� bounds the probability that the initial bit string has less than
n/2 ≠ “n zeroes is e≠�(n).
we set b := n/2 ≠ “n and a := n/2 ≠ 2“n where “ := ÷/2;

Proof of Condition 1

E(�(i)) =

n ≠ i
n ≠ i

n =

n ≠ 2i
n Ø 2“ = ‘

Proof of Condition 2

Pr(|�(i)| Ø j) Æ
3

n
j

4 1
1

n

2j
Æ

3
nj

j!

4 1
1

n

2j
Æ 1

j! Æ
1

1

2

2j≠1

This proves Condition 2 by setting ” = r = 1.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Needle in a Haystack

Theorem (Oliveto,Witt, Algorithmica 2011)

Let ÷ > 0 be constant. Then there is a constant c > 0 such that with

probability 1 ≠ 2

≠�(n)

the (1+1)-EA on Needle creates only search points

with at most n/2 + ÷n ones in 2

cn
steps.

Proof Idea
By Cherno� bounds the probability that the initial bit string has less than
n/2 ≠ “n zeroes is e≠�(n).
we set b := n/2 ≠ “n and a := n/2 ≠ 2“n where “ := ÷/2;

Proof of Condition 1

E(�(i)) =

n ≠ i
n ≠ i

n =

n ≠ 2i
n Ø 2“ = ‘

Proof of Condition 2

Pr(|�(i)| Ø j) Æ
3

n
j

4 1
1

n

2j
Æ

3
nj

j!

4 1
1

n

2j
Æ 1

j! Æ
1

1

2

2j≠1

This proves Condition 2 by setting ” = r = 1.

482

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Plateau Block Function: Lower Bound

Let k + m < (1/2 ≠ ‘)n.

PlateauBlockr(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem

The time for the (1+1)-EA to optimise PlateauBlockr is at least 2

�(m)

with

probability at least 1 ≠ 2

≠�(m)

.

Proof
Let Xt be the number of 0-bits at time t.

E(�(t) =

n ≠ Xt

n ≠ Xt

n = 1 ≠ 2Xt

n Ø n
n ≠ 2(k + m)

n =

n ≠ 2(k + m)

n
If 2(k + m) < n(1 ≠ ‘) by the simplified drift theorem

P(T < 2

cm
) = 2

≠�(m)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Plateau Block Function: Upper Bound

Theorem
The expected time for the (1+1)-EA to optimise

PlateauBlockr is at most eO(m)

.

Proof
We calculate the probability p of m consecutive steps across the plateau

k+mŸ

i=m+1

pi Ø
mŸ

i=1

k + i
en Ø

1
1

en

2m
(k + m)!

k!

Ø
1

1

en

2m 1k + m
e

2m
=

1k + m
e2n

2m

where

(k + m)!

k!

= m! · (k + m)!

m!k!

= m!

3
k + m

m

4
Ø

1m
e

2m 1k + m
m

2m
=

1k + m
e

2m

Hence,

E [T] Æ m · 1/p = m
3

e2n
k + m

4m

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Simplified Negative Drift Theorem

Some history6

. Origins
Stability of equilibria in ODEs (Lyapunov, 1892)
Stability of Markov Chains (see eg [Meyn and Tweedie, 1993])
1982 paper by Hajek [Hajek, 1982]

Simulated annealing (1988) [Sasaki and Hajek, 1988]
Drift Analysis of Evolutionary Algorithms

Introduced to EC in 2001 by He and Yao
[He and Yao, 2001, He and Yao, 2004] (additive drift)

(1+1) EA on linear functions: O(n ln n) [He and Yao, 2001]
(1+1) EA on maximum matching by Giel and Wegener
[Giel and Wegener, 2003]

Simplified drift in 2008 by Oliveto and Witt [Oliveto and Witt, 2011]
Multiplicative drift by Doerr et al [Doerr et al., 2010b]

(1+1) EA on linear functions: en ln(n) + O(n) [Witt, 2012]
Variable drift by Johannsen [Johannsen, 2010] and Mitavskiy et al.
[Mitavskiy et al., 2009]
Population drift by Lehre [Lehre, 2011c]

6More on drift in GECCO 2012 tutorial by Lehre http://www.cs.nott.ac.uk/

˜

pkl/drift

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Summary of Results

Summary - (1+1) EA on Functions of Unitation

Linear blocks
�

!
n ln

! m+k
k

""

Gap blocks

O
11

nm
m+k

2m2

�
11

nm
e(m+k)

2m2

Plateau blocks
eO(m) if k < n(1/2 ≠ Á)
�(m) if k > n(1/2 + Á)

483

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Overview

Final Overview

Overview
Tail Inequalities
Artificial Fitness Levels
Drift Analysis

Other Techniques (Not covered)
Family Trees [Witt, 2006]
Gambler’s Ruin & Martingales [Jansen and Wegener, 2001]
Probability Generating Functions [Doerr et al., 2011]
Branching Processes [Lehre and Yao, 2012]
. . .

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

Further Reading

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

Thank you!

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

Acknowledgements

http://www.project-sage.eu

This project has received funding from the European Union’s Seventh
Framework Programme for research, technological development and
demonstration under grant agreement no 618091 (SAGE).

484

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

References I

Bäck, T. (1993).
Optimal mutation rates in genetic search.
In In Proceedings of the Fifth International Conference on Genetic Algorithms (ICGA), pages 2–8.

Dang, D.-C. and Lehre, P. K. (2014).
Upper bounds on the expected runtime of non-elitist populations from fitness-levels.
To appear in Proceedings of The Genetic and Evolutionary Computation Conference (GECCO) 2014,
Vancouver, Canada.

Doerr, B., Fouz, M., and Witt, C. (2011).
Sharp bounds by probability-generating functions and variable drift.
In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11,
pages 2083–2090, New York, NY, USA. ACM.

Doerr, B., Johannsen, D., and Winzen, C. (2010a).
Multiplicative drift analysis.
In Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO ’10, pages
1449–1456. ACM.

Doerr, B., Johannsen, D., and Winzen, C. (2010b).
Multiplicative drift analysis.
In GECCO ’10: Proceedings of the 12th annual conference on Genetic and evolutionary computation, pages
1449–1456, New York, NY, USA. ACM.

Droste, S., Jansen, T., and Wegener, I. (1998).
A rigorous complexity analysis of the (1 + 1) evolutionary algorithm for separable functions with boolean
inputs.
Evolutionary Computation, 6(2):185–196.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

References II

Giel, O. and Wegener, I. (2003).
Evolutionary algorithms and the maximum matching problem.
In Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2003),
pages 415–426.

Goldberg, D. E. (1989).
Genetic Algorithms for Search, Optimization, and Machine Learning.
Addison-Wesley.

Hajek, B. (1982).
Hitting-time and occupation-time bounds implied by drift analysis with applications.
Advances in Applied Probability, 13(3):502–525.

He, J. and Yao, X. (2001).
Drift analysis and average time complexity of evolutionary algorithms.
Artificial Intelligence, 127(1):57–85.

He, J. and Yao, X. (2004).
A study of drift analysis for estimating computation time of evolutionary algorithms.
Natural Computing: an international journal, 3(1):21–35.

Holland, J. H. (1992).
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology,
Control, and Artificial Intelligence.
The MIT Press.

Jägersküpper, J. (2007).
Algorithmic analysis of a basic evolutionary algorithm for continuous optimization.
Theoretical Computer Science, 379(3):329–347.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

References III

Jägersküpper, J. (2008).
A blend of markov-chain and drift analysis.
In PPSN, pages 41–51.

Jansen, T. and Wegener, I. (2001).
Evolutionary algorithms - how to cope with plateaus of constant fitness and when to reject strings of the
same fitness.
IEEE Trans. Evolutionary Computation, 5(6):589–599.

Johannsen, D. (2010).
Random combinatorial structures and randomized search heuristics.
PhD thesis, Universität des Saarlandes.

Lehre, P. K. (2011a).
Fitness-levels for non-elitist populations.
In Proceedings of the 13th annual conference on Genetic and evolutionary computation, GECCO ’11, pages
2075–2082. ACM.

Lehre, P. K. (2011b).
Fitness-levels for non-elitist populations.
In Proceedings of the 13th annual conference on Genetic and evolutionary computation, (GECCO 2011),
pages 2075–2082, New York, NY, USA. ACM.

Lehre, P. K. (2011c).
Negative drift in populations.
In Proceedings of Parallel Problem Solving from Nature - (PPSN XI), volume 6238 of LNCS, pages
244–253. Springer Berlin / Heidelberg.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

References IV

Lehre, P. K. and Yao, X. (2012).
On the impact of mutation-selection balance on the runtime of evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 16(2):225–241.

Meyn, S. P. and Tweedie, R. L. (1993).
Markov Chains and Stochastic Stability.
Springer-Verlag.

Mitavskiy, B., Rowe, J. E., and Cannings, C. (2009).
Theoretical analysis of local search strategies to optimize network communication subject to preserving the
total number of links.
International Journal of Intelligent Computing and Cybernetics, 2(2):243–284.

Motwani, R. and Raghavan, P. (1995).
Randomized Algorithms.
Cambridge University Press.

Oliveto, P. S. and Witt, C. (2011).
Simplified drift analysis for proving lower bounds inevolutionary computation.
Algorithmica, 59(3):369–386.

Reeves, C. R. and Rowe, J. E. (2002).
Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory.
Kluwer Academic Publishers, Norwell, MA, USA.

Rudolph, G. (1998).
Finite Markov chain results in evolutionary computation: A tour d’horizon.
Fundamenta Informaticae, 35(1–4):67–89.

485

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Further reading

References V

Sasaki, G. H. and Hajek, B. (1988).
The time complexity of maximum matching by simulated annealing.
Journal of the Association for Computing Machinery, 35(2):387–403.

Sudholt, D. (2010).
General lower bounds for the running time of evolutionary algorithms.
In PPSN (1), pages 124–133.

Witt, C. (2006).
Runtime analysis of the (µ+1) ea on simple pseudo-boolean functions evolutionary computation.
In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages
651–658, New York, NY, USA. ACM Press.

Witt, C. (2012).
Optimizing linear functions with randomized search heuristics - the robustness of mutation.
In Dürr, C. and Wilke, T., editors, 29th International Symposium on Theoretical Aspects of Computer
Science (STACS 2012), volume 14 of Leibniz International Proceedings in Informatics (LIPIcs), pages
420–431, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Wolpert, D. and Macready, W. G. (1997).
No free lunch theorems for optimization.
IEEE Trans. Evolutionary Computation, 1(1):67–82.

486

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 11.000 x 8.500 inches / 279.4 x 215.9 mm
 Shift: move down by 0.72 points
 Normalise (advanced option): 'original'

 32

 D:20140604143423
 792.0000
 US Letter
 Blank
 612.0000

 Wide
 1
 0
 No
 795
 352

 Fixed
 Down
 0.7200
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 28
 27
 28

 1

 HistoryList_V1
 qi2base

