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Aims and Goals of this Tutorial

This tutorial will provide an overview of
the goals of time complexity analysis of Evolutionary Algorithms (EAs)
the most common and e�ective techniques

You should attend if you wish to
theoretically understand the behaviour and performance of the search
algorithms you design
familiarise with the techniques used in the time complexity analysis of EAs
pursue research in the area

enable you or enhance your ability to
1 understand theoretically the behaviour of EAs on di�erent problems
2 perform time complexity analysis of simple EAs on common toy problems
3 read and understand research papers on the computational complexity of

EAs
4 have the basic skills to start independent research in the area
5 follow the other theory tutorials later on today
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Introduction to the theory of EAs

Evolutionary Algorithms and Computer Science

Goals of design and analysis of algorithms
1 correctness

“does the algorithm always output the correct solution?”

2 computational complexity
“how many computational resources are required?”

For Evolutionary Algorithms (General purpose)
1 convergence

“Does the EA find the solution in finite time?”

2 time complexity
“how long does it take to find the optimum?”

(time = n. of fitness function evaluations)
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Introduction to the theory of EAs

Brief history

Theoretical studies of Evolutionary Algorithms (EAs), albeit few, have always
existed since the seventies [Goldberg, 1989];

Early studies were concerned with explaining the behaviour rather than
analysing their performance.

Schema Theory was considered fundamental;
First proposed to understand the behaviour of the simple GA
[Holland, 1992];
It cannot explain the performance or limit behaviour of EAs;
Building Block Hypothesis was controversial [Reeves and Rowe, 2002];

No Free Lunch [Wolpert and Macready, 1997]
Over all functions...

Convergence results appeared in the nineties [Rudolph, 1998];
Related to the time limit behaviour of EAs.
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Convergence analysis of EAs

Convergence
Definition

Ideally the EA should find the solution in finite steps with probability 1
(visit the global optimum in finite time);
If the solution is held forever after, then the algorithm converges to the
optimum!

Conditions for Convergence ([Rudolph, 1998])
1

There is a positive probability to reach any point in the search space from

any other point

2
The best found solution is never removed from the population (elitism)

Canonical GAs using mutation, crossover and proportional selection Do
Not converge!
Elitist variants Do converge!

In practice, is it interesting that an algorithm converges to the optimum?

Most EAs visit the global optimum in finite time (RLS does not!)
How much time?
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Computational complexity of EAs

Computational Complexity of EAs
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Computational complexity of EAs

Computational Complexity of EAs

Generally means predicting the resources the algorithm requires:
Usually the computational time: the number of primitive steps;
Usually grows with size of the input;
Usually expressed in asymptotic notation;

Exponential runtime: Ine�cient algorithm
Polynomial runtime: “E�cient” algorithm
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Computational complexity of EAs

Computational Complexity of EAs

However (EAs):
1 In practice the time for a fitness function evaluation is much higher than

the rest;
2 EAs are randomised algorithms

They do not perform the same operations even if the input is the same!
They do not output the same result if run twice!

Hence, the runtime of an EA is a random variable Tf .
We are interested in:

1 Estimating E(Tf ), the expected runtime of the EA for f ;
2 Estimating p(Tf Æ t), the success probability of the EA in t steps for f .
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Computational complexity of EAs

Asymptotic notation

f (n) œ O(g(n)) ≈∆ ÷ constants c, n
0

> 0 st. 0 Æ f (n)Æcg(n) ’n Ø n
0

f (n) œ �(g(n)) ≈∆ ÷ constants c, n
0

> 0 st. 0 Æ cg(n)Æf (n) ’n Ø n
0

f (n) œ �(g(n)) ≈∆ f (n) œ O(g(n)) and f (n) œ �(g(n))

f (n) œ o(g(n)) ≈∆ lim

næŒ

f (n)

g(n)

= 0
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Computational complexity of EAs

Goals

Understand how the runtime depends on:
parameters of the problem
parameters of the algorithm

In order to:
explain the success or the failure of these methods in practical applications,
understand which problems are optimized (or approximated) e�ciently by
a given algorithm and which are not
guide the choice of the best algorithm for the problem at hand,
determine the optimal parameter settings,
aid the algorithm design.
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General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;
p = 1/n is generally considered a good parameter setting
[Bäck, 1993, Droste et al., 1998];
By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)
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[Bäck, 1993, Droste et al., 1998];
By introducing stochastic selection and crossover we obtain a Genetic
Algorithm (GA)

462



Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

General EAs

Evolutionary Algorithms

(µ+⁄) EA
Initialise P

0

with µ individuals chosen uniformly a random from {0, 1}n

for t = 0, 1, 2, . . . until stopping condition met do
Create ⁄ new individuals by

choosing x œ Pt uniformly at random
flipping each bit in x with probability p

Create the new population Pt+1

by
choosing the best µ individuals out of µ + ⁄.

end for

If µ = ⁄ = 1, then we get the (1+1) EA;
p = 1/n is generally considered a good parameter setting
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(1+1) EA and RLS

(1+1) Evolutionary Algorithm

(1+1) EA
Initialise x uniformly at random from {0, 1}n .
repeat

Create x Õ by flipping each bit in x with p = 1/n.
if f (x Õ

) Ø f (x) then
x Ω x Õ.

end if
until stopping condition met.

If only one bit is flipped per iteration: Random Local Search (RLS).

How does it work?

Given x, how many bits will flip in expectation?
E [X ] = E [X

1

+ X
2

+ · · · + Xn ] = E [X
1

] + E [X
2

] + · · · + E [Xn ] =

(E [Xi ] = 1 · 1/n + 0 · (1 ≠ 1/n) = 1 · 1/n = 1/n E(X) = np)

=

nÿ

i=1

1 · 1/n = n/n = 1
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General properties

(1+1) EA: 2

How likely is it that exactly one bit flips? Pr (X = j) =

!n
j

"
pj

(1 ≠ p)

n≠j

What is the probability of flipping exactly one bit?

Pr (X = 1) =

3
n
1

4 1
1

n

2 1
1 ≠ 1

n

2n≠1

=

1
1 ≠ 1

n

2n≠1

Ø 1/e ¥ 0.37

Is flipping two bits more likely than flipping none?

Pr (X = 2) =

3
n
2

4 1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

n(n ≠ 1)

2

1
1

n

2
2

1
1 ≠ 1

n

2n≠2

=

1

2

1
1 ≠ 1

n

2n≠1

¥ 1/(2e)

While
Pr (X = 0) =

3
n
0

4
(1/n)

0 · (1 ≠ 1/n)

n ¥ 1/e
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General properties

Running Example - Functions of Unitation

g(x) = f

A
nÿ

i=1

xi

B
where f : R æ R
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General properties

Running Example - Functions of Unitation

f (x) =

rÿ

i=1

fi(x)
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General properties

Linear Unitation Block

f (|x|) =

;
a|x| + b if k < n ≠ |x| Æ k + m
0 otherwise.
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General properties

Toy Problem Framework - Gap

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.
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General properties

Toy Problem Framework - Plateau

f (|x|) =

;
a if k < n ≠ |x| Æ k + m
0 otherwise.
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General properties

Upper bound on the total runtime

f (x) =

rÿ

i=1

fi(x)

Assumptions
r sub-functions f

1

, f
2

, . . . , fr
Ti time to optimise sub-function fi

the evolutionary algorithm is elitist

By linearity of expectation, an upper bound on the expected runtime is

E [T ] Æ E

C
rÿ

i=1

Ti

D
=

rÿ

i=1

E [Ti ] .
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The gap sub-problem

Gap block: upper and lower bounds

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.

The probability p of optimising a gap block of length m at position k is

1m + k
nm

2m
1

e Æ

3
m + k

m

4 1
1

n

2m
1

e Æ p Æ
3

m + k
m

4 1
1

n

2m

Æ
3

(m + k)e
nm

4m

The expected time to optimise the gap block is 1/p

3
nm

(m + k)e

4m

Æ

3
m + k

m

4≠1

nm Æ E [T ] Æ enm
3

m + k
m

4≠1

Æ e
1 nm

m + k

2m

using
! n

k

"k Æ
!n

k

"
Æ

! en
k

"k for k Ø 1.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

The gap sub-problem

Gap block: upper and lower bounds

f (|x|) =

;
a if n ≠ |x| = k + m
0 otherwise.

The probability p of optimising a gap block of length m at position k is
1m + k

nm

2m
1

e Æ
3

m + k
m

4 1
1

n

2m
1

e Æ p Æ
3

m + k
m

4 1
1

n

2m
Æ

3
(m + k)e

nm

4m

The expected time to optimise the gap block is 1/p
3

nm
(m + k)e

4m

Æ
3

m + k
m

4≠1

nm Æ E [T ] Æ enm
3

m + k
m

4≠1

Æ e
1 nm

m + k

2m

using
! n

k

"k Æ
!n

k

"
Æ

! en
k

"k for k Ø 1.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Tail Inequalities

E [X ]

Tail inequalities:
The expectation can often be estimated easily.
Would like to know the probability of deviating far from expectation,
i.e., the “tails” of the distribution
Tail inequalities give bounds on the tails given the expectation.
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Markov’s inequality

Markov’s Inequality [Motwani and Raghavan, 1995]

A fundamental inequality from which many others are derived.

Theorem (Markov’s Inequality)
Let X be a random variable assuming only non-negative values.

Then for all t œ R+

,

Pr(X Ø t) Æ E [X ]

t .

Number of bits that are flipped in a mutation step
If E [X ] = 1, then Pr(X Ø 2) Æ E [X ] /2 = 1/2.

Number of one-bits after initialisation
If E [X ] = n/2, then Pr(X Ø (2/3)n) Æ E[X]

(2/3)n =

n/2

(2/3)n = 3/4.
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Cherno� bounds

Cherno� Bounds

Let X
1

, X
2

, . . . Xn be independent Poisson trials each with probability pi ;
For X =

qn
i=1

Xi the expectation is E(X) =

qn
i=1

pi .

Theorem (Cherno� Bounds)

1
Pr(X Æ (1 ≠ ”)E [X ]) Æ exp

1
≠E[X]”2

2

2
for 0 Æ ” Æ 1.

2
Pr(X > (1 + ”)E [X ]) Æ

1
e”

(1+”)

1+”

2E[X]

for ” > 0.

What is the probability that we have more than (2/3)n one-bits at
initialisation?

pi = 1/2, E [X ] = n/2,
(we fix ” = 1/3 æ (1 + ”)E [X ] = (2/3)n); then:

Pr(X > (2/3)n) Æ
1

e1/3

(4/3)

4/3

2n/2

= c≠n/2
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Cherno� bounds

Cherno� Bound Simple Application

Bitstring of length n = 100

Pr(Xi) = 1/2 and E(X) = np = 100/2 = 50.

What is the probability to have at least 75 1-bits?

Markov: Pr(X Ø 75) Æ 50

75

=

2

3

Cherno�: Pr(X Ø (1 + 1/2)50) Æ
1 Ô

e
(3/2)

3/2

2
50

< 0.0045

Truth: Pr(X Ø 75) =

q
100

i=75

!
100

i

"
2

≠100 < 0.000000282
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AFL method for upper bounds

Onemax

Onemax(x) := x
1

+ x
2

+ · · · + xn =

nÿ

i=1

xi

|x|

f (x)

1

1

2

2

n

n
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AFL method for upper bounds

Fitness-based Partitions

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Definition
A tuple (A

1

, A
2

, . . . , Am) is an
f -based partition of f : X æ R if

1 A
1

fi A
2

fi · · · fi Am = X
2 Ai fl Aj = ÿ for i ”= j
3 f (A

1

) < f (A
2

) < · · · < f (Am)

4 f (Am) = maxx f (x)

Example
Partition of Onemax into n + 1 levels

Aj := {x œ {0, 1}n | Onemax(x) = j}
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AFL method for upper bounds

Artificial Fitness Levels - Upper bounds

Fitness

A
1

A
2

A
3

...

Am≠1

Am

si : prob. of starting in Ai

ui : prob. of jumping from Ai to any Aj , i < j.
Ti : Time to jump from Ai to any Aj , i < j.

Expected runtime

E [T ] Æ
m≠1ÿ

i=1

siE

C
m≠1ÿ

j=i

Tj

D

=
m≠1ÿ

i=1

si

m≠1ÿ

j=i

E [Tj ]

=
m≠1ÿ

i=1

si

m≠1ÿ

j=i

1/uj Æ
m≠1ÿ

j=i

1/uj .
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AFL method for upper bounds

(1+1) EA on Onemax

Theorem
The expected runtime of (1+1) EA on Onemax is O(n ln n).

Proof

The current solution is in level Aj if it has j ones (hence n ≠ j zeroes).
To reach a higher fitness level it is su�cient to flip a zero into a one and
leave the other bits unchanged, which occurs with probability

uj Ø (n ≠ j) 1

n

1
1 ≠ 1

n

2n≠1

Ø n ≠ j
en

Then by Artificial Fitness Levels

E [T ] Æ
m≠1ÿ

j=0

1/uj Æ
n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)
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E [T ] Æ
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j=0
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n≠1ÿ

j=0

en
n ≠ j = en

nÿ

i=1

1

i Æ en(ln n + 1) = O(n ln n)
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AFL method for upper bounds
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AFL method for upper bounds

Linear Unitation Block: Upper bound

Theorem
The expected runtime of the (1+1)-EA for a linear

block is O(n ln((m + k)/k)).

Proof

Let i := n ≠ j be the number of 0-bits in block Aj

The probability is ui Ø i · 1

n

!
1 ≠ 1

n

"n≠1 Ø
! i

en

"

Hence,
!

1

ui

"
Æ

! en
i

"

Then (Artificial Fitness Levels):

E(T) Æ
k+mÿ

i=k+1

en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2
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i
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en
i Æ en

k+mÿ

i=k+1

1

i Æ en

A
k+mÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
Æ en ln

1m + k
k

2
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AFL method for upper bounds

Linear Unitation Block: Upper bound
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AFL for lower bounds

Artificial Fitness Levels - Lower bounds2

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Theorem ([Sudholt, 2010])
Let

si : prob. of starting in Ai

ui : prob. of leaving Ai , and

pij : prob. of jumping from Ai to Aj .

If there exists a ‰ œ [0, 1) st. for ’i < j

pij Ø ‰

m≠1ÿ

k=j

pik ,

then

E [T ] Ø ‰

m≠1ÿ

i=1

si

m≠1ÿ

j=i

1

uj
.

2A di�erent version of the theorem is presented.
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AFL for lower bounds

(1+1) EA lower bound for Onemax

Fitness level Ai := {x œ {0, 1}n | Onemax(x) = i}

x =

i˙ ˝¸ ˚
1111111111111111111111111

n≠i˙ ˝¸ ˚
000000000000000000000 œ Ai

Probability pij of jumping to level j > i and beyond

pij Ø
3

n ≠ i
j ≠ i

4 1
1

n

2j≠i 1
1 ≠ 1

n

2n≠(j≠i)

n≠1ÿ

k=j

pik Æ
3

n ≠ i
j ≠ i

4 1
1

n

2j≠i

Hence, for ‰ = 1/e

pij Ø
1

1 ≠ 1

n

2n≠(j≠i)

n≠1ÿ

k=j

pik Ø ‰

n≠1ÿ

k=j

pik
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AFL for lower bounds

(1+1) EA lower bound for Onemax

Theorem
The expected runtime of the (1+1) EA for Onemax is �(n ln n).

Probability ui of any improvement

ui Æ n ≠ i
n

Assuming that s
0

= 1, we get

E [T ] Ø
1

1

e

2 n≠1ÿ

i=0

1

ui

Ø
1

1

e

2 n≠1ÿ

i=0

n
n ≠ i =

1n
e

2 nÿ

i=1

1

i = �(n ln n)
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AFL for lower bounds

Linear Block: Lower Bound

Theorem
The expected runtime to finish a linear block of length m starting at k + m
0-bits is �(n ln((m + k)/k)).

For 0 Æ i Æ m, define Ai := {x : n ≠ |x| = k + m ≠ i}. Note that

pij =

3
k + m ≠ i

j ≠ i

4 1
1

n

2j≠i 1
1 ≠ 1

n

2n≠(j≠i)

m≠1ÿ

k=j

pik Æ
3

k + m ≠ i
j ≠ i

4 1
1

n

2j≠i

Therefore,

pij Ø
1

1 ≠ 1

n

2n≠(j≠i)

m≠1ÿ

k=j

pik Ø
1

1

e

2 m≠1ÿ

k=j

pik

and assuming that s
0

= 1, we get

E [T ] Ø
1

1

e

2 m≠1ÿ

i=0

1

ui
Ø

1
1

e

2 m≠1ÿ

i=0

n
m + k ≠ i =

1n
e

2 A
m+kÿ

i=1

1

i ≠
kÿ

i=1

1

i

B
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AFL for non-elitist EAs

Advanced: Fitness levels for non-elitist populations

P

t+1

P

t

x

for t = 0, 1, 2, . . . until termination condition do
for i = 1 to ⁄ do

Sample i-th parent x according to psel(Pt , f )

Sample i-th o�spring Pt+1

(i) according to pvar(x)

end for
end for

A general algorithmic scheme for non-elitistic EAs
f : X æ R fitness function over arbitrary finite search space X
psel selection mechanism (e.g. (µ, ⁄)-selection)
pvar variation operator (e.g. mutation)
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AFL for non-elitist EAs

Advanced: Fitness Levels for non-Elitist Populations3

Fitness

A
1

A
2

A
3

...

Am≠1

Am

Theorem ([Lehre, 2011a])

If exists ”, “ú, s
1

, ..., sm , sú, p
0

œ (0, 1) st.

(C1) pvar
!
y œ A+

j | x œ Aj
"

Ø sj Ø sú
upgrade probability sj

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

Ø p
0

resting probability p
0

(C3) —(“) > “(1 + ”)/p
0

for all “ < “ú
“high” selective pressure

(C4) ⁄ > cÕ
ln(m/sú) for some const. cÕ

“large” population size

then for a constant c > 0

E [T ] Æ c

A
m⁄2

+

m≠1ÿ

j=1

1

sj

B

3See this year’s GECCO theory track for an improved version! [Dang and Lehre, 2014].
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AFL for non-elitist EAs
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then for a constant c > 0

E [T ] Æ c

A
m⁄2

+

m≠1ÿ

j=1

1

sj

B

3See this year’s GECCO theory track for an improved version! [Dang and Lehre, 2014].
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AFL for non-elitist EAs

Example: (µ, ⁄) EA on LeadingOnes

x =

Leading 1-bits.˙ ˝¸ ˚
1111111111111111 0

Random bitstring.˙ ˝¸ ˚
ú ú ú ú ú ú ú ú ú ú ú ú ú ú úú .

First 0-bit.

LeadingOnes(x) =

nÿ

i=1

iŸ

j=1

xi

Theorem
If ⁄/µ > e and ⁄ > c ln n, then the expected runtime of (µ,⁄) EA on

LeadingOnes is O(n⁄2

+ n2

).
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AFL for non-elitist EAs

Measuring Selective Pressure

Definition

Let x(1), x(2), . . . , x(⁄) be the individuals in a population P œ X ⁄, sorted
according to a fitness function f : X æ R, i.e.

f
!
x(1)

"
Ø f

!
x(2)

"
Ø · · · Ø f

!
x(⁄)

"
.

For any “ œ (0, 1), the cumulative selection probability of psel is

—(“) := Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f )

"
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AFL for non-elitist EAs

Cumulative Selection Prob. - Example

(µ, ⁄)-selection

“⁄

⁄

µ

f

psel

—(“) = Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f )

"

Ø “⁄
µ

if “⁄ Æ µ
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AFL for non-elitist EAs

Cumulative Selection Prob. - Example (µ, ⁄)-selection

“⁄

⁄

µ

f

psel

—(“) = Pr

!
f (y) Ø f

!
x(“⁄)

"
| y is sampled from psel(P, f )

"

Ø “⁄
µ

if “⁄ Æ µ
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AFL for non-elitist EAs

Example Application4

(µ,⁄) EA with bit-wise mutation rate ‰/n on LeadingOnes

Partition of fitness function into m := n + 1 levels

Aj := {x œ {0, 1}n | x
1

= x
2

= · · · = xj≠1

= 1 · xj = 0}

If ⁄/µ > e‰ and ⁄ > cÕÕ
ln(n) then

(C1) pvar
!
y œ A+

j | x œ Aj
"

= �(1/n)

=: sj =: sú

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

¥ e≠‰

=: p
0

(C3) —(“) Ø “⁄/µ > “e‰

= “/p
0

(C4) ⁄ > cÕÕ
ln(n)

> c ln(m/sú
)

then E [T ] = O(m⁄2

+

qm
j=1

s≠1

j ) = O(n⁄2

+ n2

)

4Calculations on this slide are approximate. See [Lehre, 2011a] for exact calculations.

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

AFL for non-elitist EAs

Example Application4

(µ,⁄) EA with bit-wise mutation rate ‰/n on LeadingOnes

Partition of fitness function into m := n + 1 levels

Aj := {x œ {0, 1}n | x
1

= x
2

= · · · = xj≠1

= 1 · xj = 0}

If ⁄/µ > e‰ and ⁄ > cÕÕ
ln(n) then

(C1) pvar
!
y œ A+

j | x œ Aj
"

= �(1/n) =: sj =: sú

(C2) pvar
!
y œ Aj fi A+

j | x œ Aj
"

¥ e≠‰
=: p

0

(C3) —(“) Ø “⁄/µ > “e‰
= “/p

0

(C4) ⁄ > cÕÕ
ln(n) > c ln(m/sú

)

then E [T ] = O(m⁄2

+

qm
j=1

s≠1

j ) = O(n⁄2

+ n2

)

4Calculations on this slide are approximate. See [Lehre, 2011a] for exact calculations.
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AFL for non-elitist EAs

Artificial Fitness Levels: Conclusions

It’s a powerful general method to obtain (often) tight upper bounds on
the runtime of simple EAs;

For o�spring populations tight bounds can often be achieved with the
general method;

There exists a variant of artificial fitness levels for populations
[Lehre, 2011b].
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What is Drift5 Analysis?

Prediction of the long term behaviour of a process X
hitting time, stability, occupancy time etc.

from properties of �.

5NB! (Stochastic) drift is a di�erent concept than genetic drift in population genetics.
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Additive Drift Theorem

Additive Drift Theorem

b0

Yk = d(Xk)

Á

(C1+) ’k E [Yk+1

≠ Yk | Yk > 0] Æ ≠Á

(C1≠) ’k E [Yk+1

≠ Yk | Yk > 0] Ø ≠Á

Theorem ([He and Yao, 2001, Jägersküpper, 2007, Jägersküpper, 2008])
Given a stochastic process Y

1

, Y
2

, . . . over an interval [0, b] µ R.

Define T := min{k Ø 0 | Yk = 0}, and assume E [T ] < Œ.

If (C1+) holds for an Á > 0, then E [T | Y
0

] Æ b/Á.

If (C1≠) holds for an Á > 0, then E [T | Y
0

] Ø Y
0

/Á.
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Additive Drift Theorem

Additive Drift Theorem

b0

Yk = d(Xk)

Á

(C1+) ’k E [Yk+1

≠ Yk | Yk > 0] Æ ≠Á

(C1≠) ’k E [Yk+1

≠ Yk | Yk > 0] Ø ≠Á

Theorem ([He and Yao, 2001, Jägersküpper, 2007, Jägersküpper, 2008])
Given a stochastic process Y

1

, Y
2

, . . . over an interval [0, b] µ R.

Define T := min{k Ø 0 | Yk = 0}, and assume E [T ] < Œ.

If (C1+) holds for an Á > 0, then E [T | Y
0

] Æ b/Á.

If (C1≠) holds for an Á > 0, then E [T | Y
0

] Ø Y
0

/Á.
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Additive Drift Theorem

Plateau Block Function: Upper Bound

Let k > n/2 + ‘n.

PlateauBlock¸(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem
The expected time for the (1+1)-EA to optimise the Plateau function is O(m).

Proof
Let Xt be the number of 0-bits at time t. Then the drift is

E(�(t) Ø Xt

n ≠ n ≠ Xt

n =

2Xt

n ≠ 1 Ø 2k
n ≠ 1

Hence, by drift analysis

E [T ] Æ m
(2k)/n ≠ 1

=

mn
2k ≠ n = O(m)

where the last equality holds as long as k > n/2 + ‘n
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Additive Drift Theorem

Plateau Block Function: Lower Bound

Let k > n/2 + ‘n.

PlateauBlock¸(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem
The expected time for the (1+1)-EA to optimise the Plateau function is �(m).

Proof
Let Xt be the number of 0-bits at time t. Then the drift is

E(�(t) =

Xt

n ≠ n ≠ Xt

n =

2Xt

n ≠ 1 Æ 2(m + k)

n ≠ 1

Hence, by drift analysis

E [T ] Ø m
2(m + k)/n ≠ 1

=

mn
2(m + k) ≠ n = �(m)

where the last equality holds as long as k > n/2 + ‘n
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Multiplicative Drift Theorem

Drift Analysis for Onemax

Lets calculate the runtime of the (1+1)-EA using the additive Drift Theorem.
1 Let d(Xt) = i where i is the number of zeroes in the bitstring;

2 Note that d(Xt) ≠ d(Xt+1

) Ø 0 for all t;
3 The distance decreases by 1 as long as a 0 is flipped and the ones remain

unchanged:

E(�(t)) = E [d(Xt)≠d(Xt+1

) | Xt ] Ø 1 · i
n

3
1≠ 1

n

4n≠1

Ø i
en Ø 1

en =: ”

4 The expected initial distance is E(d(X
0

)) = n/2

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ E [(d(X
0

)]

”
Æ n/2

1/(en)

= e/2 · n2

= O(n2

)

We need a di�erent distance function!
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Multiplicative Drift Theorem
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Multiplicative Drift Theorem

Drift Analysis for Onemax

1 Let d(Xt) = ln(i + 1) where i is the number of zeroes in the bitstring;

2 For x Ø 1, it holds that ln(1 + 1/x) Ø 1/x ≠ 1/(2x2

) Ø 1/(2x).
3 The distance decreases as long as a 0 is flipped and the ones remain

unchanged

E [�(t)] = E [d(Xt) ≠ d(Xt+1

) | d(Xt) = i Ø 1]

Ø i
en (ln(i + 1) ≠ ln(i)) =

i
en ln

1
1 +

1

i

2

Ø i
en

1

2i =

1

2en =: ”.

4 The initial distance is d(X
0

) Æ ln(n + 1)

The expected runtime is (i.e. Eq. (??)):

E(T | d(X
0

) > 0) Æ d(X
0

)

”
Æ ln(n + 1)

1/(2en)

= O(n ln n)

If the amount of progress depends on the distance from the optimum we need
to use a logarithmic distance!
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Multiplicative Drift Theorem

Multiplicative Drift Theorem

Theorem (Multiplicative Drift, [Doerr et al., 2010a])
Let {Xt}tœN0 be random variables describing a Markov process over a finite

state space S ™ R. Let T be the random variable that denotes the earliest

point in time t œ N
0

such that Xt = 0.

If there exist ”, c
min

, c
max

> 0 such that

1 E [Xt ≠ Xt+1

| Xt ] Ø ”Xt and

2 c
min

Æ Xt Æ c
max

,

for all t < T , then

E [T ] Æ 2

”
· ln

1
1 +

c
max

c
min

2
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Multiplicative Drift Theorem

(1+1)-EA Analysis for Onemax

Theorem
The expected time for the (1+1)-EA to optimise Onemax is O(n ln n)

Proof

Distance: let Xt be the number of zeroes in step t;
E [Xt+1

|Xt ] Æ Xt ≠ 1 · Xt
en = Xt ·

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt = i] Ø Xt ≠ Xt ·
!
1 ≠ 1

en

"
= Xt/(en) (” = 1/(en))

1 = c
min

Æ Xt Æ c
max

= n
Hence,

E [T ] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + n) = O(n ln n)
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en
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= Xt/(en) (” = 1/(en))

1 = c
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· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + n) = O(n ln n)

Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Linear Unitation Block: Upper Bound

Theorem
The expected time for the (1+1)-EA to optimise

the Linear Unitation Block is O(n ln((m + k)/k))

Proof

Distance: let i be the number of zeroes;
E [Xt+1

|Xt ] Æ Xt ≠ 1 · Xt
en = Xt

!
1 ≠ 1

en

"

E [Xt ≠ Xt+1

|Xt ] Ø Xt ≠ Xt
!
1 ≠ 1

en

"
=

1

en Xt (” :=

1

en )
k = c

min

Æ Xt Æ c
max

= m + k
Hence,

E [T ] Æ 2

”
· ln

1
1 +

c
max

c
min

2
= 2en ln(1 + (m + k)/k) = O(n ln((m + k)/k))

481



Introduction Motivation Evolutionary Algorithms Tail Inequalities Artificial Fitness Levels Drift Analysis Conclusions

Multiplicative Drift Theorem

Linear Unitation Block: Upper Bound
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1
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1

en )
k = c
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· ln
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c
max

c
min

2
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Simplified Negative Drift Theorem

Simplified Drift Theorem

target
a b

drift away from target

no large jumps
towards target

start

Theorem (Simplified Negative-Drift Theorem, [Oliveto and Witt, 2011])

Suppose there exist three constants ”,‘,r such that for all t Ø 0:

1 E(�t(i)) Ø ‘ for a < i < b,

2
Prob(|�t(i)| = j) Æ 1

(1+”)

j≠r for i > a and j Ø 1.

Then

Prob(Tú Æ 2

cú
(b≠a)

) = 2

≠�(b≠a)

.
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Simplified Negative Drift Theorem

Needle in a Haystack

Theorem (Oliveto,Witt, Algorithmica 2011)

Let ÷ > 0 be constant. Then there is a constant c > 0 such that with

probability 1 ≠ 2

≠�(n)

the (1+1)-EA on Needle creates only search points

with at most n/2 + ÷n ones in 2

cn
steps.

Proof Idea
By Cherno� bounds the probability that the initial bit string has less than
n/2 ≠ “n zeroes is e≠�(n).
we set b := n/2 ≠ “n and a := n/2 ≠ 2“n where “ := ÷/2;

Proof of Condition 1

E(�(i)) =

n ≠ i
n ≠ i

n =

n ≠ 2i
n Ø 2“ = ‘

Proof of Condition 2

Pr(|�(i)| Ø j) Æ
3

n
j

4 1
1

n

2j
Æ

3
nj

j!

4 1
1

n

2j
Æ 1

j! Æ
1

1

2

2j≠1

This proves Condition 2 by setting ” = r = 1.
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Simplified Negative Drift Theorem

Plateau Block Function: Lower Bound

Let k + m < (1/2 ≠ ‘)n.

PlateauBlockr(|x|) =

;
a if k Æ n ≠ |x| Æ k + m
0 otherwise.

Theorem

The time for the (1+1)-EA to optimise PlateauBlockr is at least 2

�(m)

with

probability at least 1 ≠ 2

≠�(m)

.

Proof
Let Xt be the number of 0-bits at time t.

E(�(t) =

n ≠ Xt

n ≠ Xt

n = 1 ≠ 2Xt

n Ø n
n ≠ 2(k + m)

n =

n ≠ 2(k + m)

n
If 2(k + m) < n(1 ≠ ‘) by the simplified drift theorem

P(T < 2

cm
) = 2

≠�(m)
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Simplified Negative Drift Theorem

Plateau Block Function: Upper Bound

Theorem
The expected time for the (1+1)-EA to optimise

PlateauBlockr is at most eO(m)

.

Proof
We calculate the probability p of m consecutive steps across the plateau

k+mŸ

i=m+1

pi Ø
mŸ

i=1

k + i
en Ø

1
1

en

2m
(k + m)!

k!

Ø
1

1

en

2m 1k + m
e

2m
=

1k + m
e2n

2m

where

(k + m)!

k!

= m! · (k + m)!

m!k!

= m!

3
k + m

m

4
Ø

1m
e

2m 1k + m
m

2m
=

1k + m
e

2m

Hence,

E [T ] Æ m · 1/p = m
3

e2n
k + m

4m
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Simplified Negative Drift Theorem

Some history6

. Origins
Stability of equilibria in ODEs (Lyapunov, 1892)
Stability of Markov Chains (see eg [Meyn and Tweedie, 1993])
1982 paper by Hajek [Hajek, 1982]

Simulated annealing (1988) [Sasaki and Hajek, 1988]
Drift Analysis of Evolutionary Algorithms

Introduced to EC in 2001 by He and Yao
[He and Yao, 2001, He and Yao, 2004] (additive drift)

(1+1) EA on linear functions: O(n ln n) [He and Yao, 2001]
(1+1) EA on maximum matching by Giel and Wegener
[Giel and Wegener, 2003]

Simplified drift in 2008 by Oliveto and Witt [Oliveto and Witt, 2011]
Multiplicative drift by Doerr et al [Doerr et al., 2010b]

(1+1) EA on linear functions: en ln(n) + O(n) [Witt, 2012]
Variable drift by Johannsen [Johannsen, 2010] and Mitavskiy et al.
[Mitavskiy et al., 2009]
Population drift by Lehre [Lehre, 2011c]

6More on drift in GECCO 2012 tutorial by Lehre http://www.cs.nott.ac.uk/

˜

pkl/drift
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Summary - (1+1) EA on Functions of Unitation

Linear blocks
�

!
n ln

! m+k
k

""

Gap blocks

O
11

nm
m+k

2m2

�
11

nm
e(m+k)

2m2

Plateau blocks
eO(m) if k < n(1/2 ≠ Á)
�(m) if k > n(1/2 + Á)
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Final Overview

Overview
Tail Inequalities
Artificial Fitness Levels
Drift Analysis

Other Techniques (Not covered)
Family Trees [Witt, 2006]
Gambler’s Ruin & Martingales [Jansen and Wegener, 2001]
Probability Generating Functions [Doerr et al., 2011]
Branching Processes [Lehre and Yao, 2012]
. . .
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Further Reading
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Further reading

Thank you!
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