
1

Blind No More: Constant Time Non-Random
Improving Moves

and Exponentially Powerful Recombination

Darrell Whitley
Computer Science, Colorado State University

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other

uses, contact the owner/author(s). Copyright is held by the
author/owner(s). GECCO’14, July 1216, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2881-4/14/07.

2

What is a Landscape?

3

What is a Landscape?

4

Local Search as Tree Search

ABCDE

ACBDE ABDCEABEDC ABCED

We often think of local search as greedy best-first search.
But the neighborhood really induces a connected graph.

559

5

Local Search as Tree Search

ABCDE

ACBDE

Goal: pick the best move at each level without search in O(1) time.

6

Introduction

What is a landscape?

Many different intuitive definitions

A mathematical formalism of the search space of a combinatorial
optimization problem

Definition: a landscape is a tuple (X,N, f)

A set of states X
A neighborhood operator N : X 7→ P(X)
A fitness function f : X 7→ R

7

Introduction: a landscape

53

56 48

42

44

1,2,3,4,5,6 1,4,3,2,5,6

1,2,5,4,3,6 1,4,5,2,3,6

1,4,5,6,3,2

X set of states
N : X 7→ P(X) neighborhood operator

f : X 7→ R objective function

8

Preliminaries

G(X,E)

is the underlying graph induced by N.
We assume G is regular with vertices of degree d.

A ∈ R|X|×|X|

is the adjacency matrix of G.
If x1 and x2 are neighbors, A(x1, x2) = 1.

∆ = A− dI

is the Laplacian of G.

560

9

The Wave Equation: definition 1

On an arbitrary landscape

f and N are unrelated

On an elementary landscape

The wave equation

∆f = λf

where λ is a scalar

In other words, f is an eigenvector of the Laplacian

10

The Wave Equation: definition 1

Average change

∆f = (A− dI)f = k(f̄ − f)

∆f(x) =
∑

y∈N(x)

(f(y)− f(x)) = k(f̄ − f(x))

Average value

avg
y∈N(x)

{f(y)} =
1

d

∑

y∈N(x)

f(y)

= f(x) +
1

d

 ∑

y∈N(x)

f(y)− f(x)

= f(x) +
1

d
∆f(x)

= f(x) +
k

d

(
f̄ − f(x)

)

11

The Wave Equation: definition 2

f(x) =
∑

a subset of “components”

Starting from average...

avg
y∈N(x)

{f(y)} = f(x) + avg
y∈N(x)

{components in− components out}

12

Example: TSP under 2-opt

f(x)

∑
wi − f(x)

f(y) = f(x)− out+ in

Components: set of edge weights wi,j

f(x) = sum of edge weights induced by tour x

There are n(n− 1)/2− n weights not in tour x

Average value of components out: 2
nf(x)

Average value of components in: 2
n(n−3)/2 (

∑
w − f(x))

561

13

The Components and f̄

Let C denote the set of components

0 < p3 < 1 is the proportion of the components in C that contribute to
the cost function for any randomly chosen solution

f̄ = p3
∑

c∈C
c

For the TSP:

f̄ =
n

n(n− 1)/2

∑

wi,j∈C
wi,j

f̄ =
2

n− 1

∑

wi,j∈C
wi,j

14

The Wave Equation: definition 2

avg
y∈N(x)

{f(y)} = f(x) +
2

n(n− 3)/2

(∑
w − f(x)

)
− 2

n
f(x)

= f(x) +
2

n(n− 3)/2

(
(n− 1)/2f̄ − f(x)

)
− 2

n
f(x)

= f(x) +
(n− 1)

n(n− 3)/2
(f̄ − f(x))

= f(x) +
k

d
(f̄ − f(x))

15

For a 5 city TSP

ab bc cd de ae ac ad bd be ce
ABCDE 1 1 1 1 1 0 0 0 0 0
ABEDC 1 0 1 1 0 1 0 0 1 0
ABCED 1 1 0 1 0 0 1 0 0 1
ABDCE 1 0 1 0 1 0 0 1 0 1
ACBDE 0 1 0 1 1 1 0 1 0 0
ADCBE 0 1 1 0 1 0 1 0 1 0

16

Looking at the neighbors in aggregate.

ab bc cd de ae ac ad bd be ce
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 1 1 1

562

17

Properties

local maxima

local minima

x

f(x)
f̄

18

Walsh Functions

The Walsh Decomposition

f(x) =
2n−1∑

j=0

wjψj(x)

Let bc(j) count the number of 1 bits in string j:

ψj(x) = (−1)bc(j∧x)

If bc(j ∧ x) is odd, then ψj(x) = −1
If bc(j ∧ x) is even, then ψj(x) = 1.

wj =
1

2n

2n−1∑

i=0

f(i)ψj(i)

19

Boolean Satisfiability

Given a logical expression consisting of Boolean variables, determine
whether or not there is a setting for the variables that makes the
expression TRUE.

Literal: a variable or the negation of a variable

Clause: a disjunct of literals

A 3SAT Example

(¬x2 ∨ x1 ∨ x0) ∧ (x3 ∨ ¬x2 ∨ x1) ∧ (x3 ∨ ¬x1 ∨ ¬x0)

recast as a MAX3SAT Example

(¬x2 ∨ x1 ∨ x0) + (x3 ∨ ¬x2 ∨ x1) + (x3 ∨ ¬x1 ∨ ¬x0)

20

A General Model for all bounded Pseudo-Boolean Problems

1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1

f1 f2 f3 f f4 m

f

i = 1
i
(x, mask)f(x) =

m

563

21

Why “elementary”? Components of more general landscapes

f3(x)

f1(x)

f2(x)

f(x)

x

+
+

=

22

Walsh Analysis

Every n-bit MAXSAT or NK-landscape or P-spin problem is a sum of m
subfunctions, fi:

f(x) =
m∑

i=1

fi(x)

The Walsh transform of f is is a sum of the Walsh transforms of the
individual subfunctions.

W (f(x)) =
m∑

i=1

W (fi(x))

Each subfunction fi contributes only 2K Walsh coefficients.
Assuming m is O(n) then the number of Walsh coefficients is O(n).

23

MAX-3SAT decomposition

MAX-3SAT is a superposition of 3 elementary landscapes

Walsh span of order p

ϕ(p) =
∑

{i : bc(i)=p}

wiψi

The pth Walsh span is an elementary landscape

∆ϕ(p) = −2pϕ(p)

24

MAX-3SAT decomposition

Recall that we can express f as:

f(x) =

m∑

i=1

2k∑

j=1

wm(i,j)ψm(i,j)(x)

Grouping the Walsh decomposition results in

f(x) =
3∑

p=0

ϕ(p)(x)

Thus MAX-3SAT is a superposition of 3-elementary landscapes

564

25

Superpositions of Elementary Landscapes

f(x) = f1(x) + f2(x) + f3(x) + f4(x)

f1(x) = f1a(x) + f1b(x) + f1c(x)

f2(x) = f2a(x) + f2b(x) + f2c(x)

f3(x) = f3a(x) + f3b(x) + f3c(x)

f4(x) = f4a(x) + f4b(x) + f4c(x)

ϕ(1)(x) = f1a(x) + f2a(x) + f3a(x) + f4a(x)

ϕ(2)(x) = f1b(x) + f2b(x) + f3b(x) + f4a(x)

ϕ(3)(x) = f1c(x) + f2c(x) + f3c(x) + f4a(x)

f(x) = ϕ(1)(x) + ϕ(2)(x) + ϕ(3)(x)
26

Constant Time Steepest Descent

Let vector w′ store the Walsh coefficients
including the sign relative to solution x.

w′i(x) = wiψi(x)

Flip bit p such that yp ∈ N(x). Then

if p ⊂ i then w′i(yp) = −w′i(x)

otherwise w′i(yp) = w′i(x)

For MAX-kSAT and NK-Landscapes
flipping one bit changes the sign

of only a constant number of Walsh coefficients.

27

Constant Time Steepest Descent

Construct a vector S such that

Sp(x) =
∑

∀b, p⊂b

w′b(x)

In this way, all of the Walsh coefficients whose signs will be changed by
flipping bit p are collected into a single number Sp(x).

28

Constant Time Steepest Descent

Lemma 1.
Let yp ∈ N(x) be the neighbor of string x generated by flipping bit p.

f(yp) = f(x)− 2(Sp(x))

If p ⊂ b then ψb(yp) = −1(ψb(x)) and otherwise ψb(yp) = ψb(x).

Corollary:
Because f(x) is constant wrt p: Maximizing Sp(x) minimizes the
neighborhood of f(x).

565

29

Constant Time Steepest Descent

To make this easy, assume such that every variable occcurs exactly
the same number of times. Then each variable appears in km/N = kc
subfunctions.

This easy case analysis also exactly corresponds to the average
complexity case (with mild restrictions on the frequency of bit flips).

30

Constant Time Steepest Descent

When one bit flips, it impacts kc subfunctions.

At most ck(k − 1) terms in vector S change.

When one bit flips, at most ck(2k−2) nonlinear Walsh coefficients
change, and only 1 linear term changes.

Thus, the update take O(1) time.

31

The locations of the updates are obvious

S1(yp) = S1(x)

S2(yp) = S2(x)

S3(yp) = S3(x) +
∑

∀b, (p∧3)⊂b

w′b(x)

S4(yp) = S4(x)

S5(yp) = S5(x)

S6(yp) = S6(x)

S7(yp) = S7(x)

S8(yp) = S8(x) +
∑

∀b, (p∧8)⊂b

w′b(x)

S9(yp) = S9(x)

32

”Old” and ”New” improving moves

A ”new” improving move must be a new updated location in S.
Checking these takes O(1) time on average.

There can be previously discovered “old” moves stored in a buffer.

For MAX-kSAT we use a fixed number of buffers to track “old” moves.
This can be done (virtually always) in O(1) time.

566

33

Next Ascent

If we want to do Next Ascent instead of Steepest Ascent, we just all of
the improving moves into a buffer and pick one. Again, this takes O(1)
time.

34

Identifying Local Optima

If there are no improving moves, the point is a local optimum. The point
is automatically identified: there are no ”old” improving moves and no
update is an improving move.

35

Speed Results for MAXSAT Solvers

AdaptG2WSAT GSAT Walsh
UR-1000000 698.86 32.13 1.80
UR-2000000 3458.06 140.37 3.88
UR-3000000 8157.01 319.95 6.05

mem-ctrl2 4120.52 54.11 4.17
wb 4m8s-48 7339.77 83.16 6.06

Table: Time in seconds require to reach a Local Optima for several stochastic
local search algorithms for MAX-kSAT problems.

36

Walsh and Hyperplane Information

Functions α and β are defined on a schema, h:

α(h)[i] =

{
0 if h[i] = *
1 if h[i] = 0 or 1

β(h)[i] =

{
0 if h[i] = * or 0
1 if h[i] = 1

567

37

Walsh and Hyperplane Information

f(h) =
1

|h|
∑

x∈h

f(x) =
∑

j⊆α(h)

wjψj(β(h))

α(h) is a mask used to select 2o(h) relevant coefficients.
β(h) extracts the 1 bits from the respective coefficients.
An odd number of 1 bits yields a negative sign.

Example: Let h = **01** and compute f(h)

α(**01**) = 001100 and β(**01**) = 000100

j ∈ {000000, 000100, 001000, 001100}

f(**01**) = w0 − w4 + w8 − w12.

38

Hyperplane Initialization

The Hyperplane Advantages:
Start from 1) a good solutions and 2) in a good subspace
For each clause, select the order-3 hyperplane which yields the best
average evaluation.
Use this hyperplane information to select a starting point for search
(which is guaranteed to be below average).

f(****010) = w0 + w1 − w2 + w4 − w3 + w5 − w6 − w7.

Calculations take 23 additions (FFT/WFT Butterfly) per clause.

f(****010) = ((w1)− (w2 + w4))− ((w3 − w5) + (w6 + w7)).

39

Results for MAXSAT Solvers

HyperWalsh Walsh GSAT AdaptG2WSat
div-8 5467 ± 197 13761 13066 ± 187 10795 ± 93
c2-1 12819 ± 80 19524 19595 ± 116 16056 ± 251
b15 24517 ± 149 30803 31509 ± 149 27920 ± 176

mrisc 6435 ± 258 40851 39628 ± 588 34301 ± 768
rsd-37 22976 ± 167 92361 87911 ± 533 64162 ± 355

mem-c2 29649 ± 368 75729 73071 ± 584 38277 ± 535

3sat-1m 29249 ± 125 41511 40418 ± 165 30856 ± 134
3sat-2m 58415 ± 186 82898 80696 ± 220 61466 ± 182

Table: Mean and standard deviation of evaluations of solutions found after n
bit flips by several algorithms.

40

Steepest Descent over Neighborhood Means

We have the vector S such that

Sp(x) =
∑

∀b, p⊂b

w′b(x)

Also construct the vector Z such that

Zp(x) =
∑

∀b, p⊂b

order(b) w′b(x)

Note that S and Z and U all update at exactly the same locations.

Lemma 2.

Avg(N(yp)) = Avg(N(x))− 2(Sp(x)) +
4

N
Zp(x)

568

41

Steepest Descent over Neighborhood Means

Let Up(x) = −2(Sp(x)) +
4

N
Zp(x)

Avg(N(yp)) = Avg(N(x)) + Up(x)

The vector U(x) can now be used as a proxy for Avg(N(x))
Maximizing Up(x) minimizes the neighborhood of Avg(N(yp)).

42

The Plateau Problem

43

The locations of the updates are obvious

U1(yp) = U1(x)

U2(yp) = U2(x)

U3(yp) = U3(x) + Update

U4(yp) = U4(x)

U5(yp) = U5(x)

U6(yp) = U6(x)

U7(yp) = U7(x)

U8(yp) = U8(x) + Update

U9(yp) = U9(x)

44

Search on an NKq-Landscape

And NKq-Landscape generates subfunctions using only q values. For
q = 2 there are many plateaus and equal moves.

1 f(x) versus Avg(N(x))

2 Steepest Ascent versus Next Ascent

3 Random Walk Restart (with O(1) cost) versus Hard Random Restart
(with O(N) cost)

569

45

Search on an NKq-Landscape

100 200 300 400 500

0
1

2
3

4
5

NKQ (K=4)

Number of Variables

Fu
nc

tio
n

E
va

lu
at

io
n

Va
lu

es

●

●
● ●

● f−steep−walk
Ave−steep−walk
f−steep−rest
Ave−steep−rest
f−next−walk
Ave−next−walk
f−next−rest
Ave−next−rest

46

Multiple Step Lookahead Local Search

Let’s return to simple local search.

What if we could look 3, 4, 5, or 6 moves ahead? WE CAN!

47

Multiple Step Lookahead Local Search

d
is

ta
n

ce
 t

o
 o

p
ti

m
u

m

0.0

0.2

0.4

0.6

0.8

0 5 15 2010

r=1

r=2

r=3

r=5
r=4

r=6

time in seconds

In this figure, N = 12,000, K = 2 (k=3), and q=4. The radius is 1, 2, 3,
4, 5, 6.

48

Conclusions

Elementary landscapes provide an interesting tool for analyzing
search in combinatorial optimization

Linear algebraic approach to formalizing “landscape” concept for
discrete problems

These methods work for ALL k-bounded Pseudo-Boolean Functions

570

49

The Traveling Salesman Problem

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

50

How do we find reasonable solutions?

1. Construct the minimal spanning tree.

2. Then follow the minimal spanning tree cutting corners when possible.

3. No worst than 2.0 times (1.5 times) the true “optimum”
This assumes the triangle inequality holds.

4. Improve the solution using local search.

51

A Minimal Spannin Tree

52

2 Opt

A B C D E F G H I J K L M N O P Q S T U V W X Y Z

A B C D E F G ... H I J K L M N O P ... Q S T U V W X Y Z

A B C D E F G ... P O N M L K J I H ... Q S T U V W X Y Z

Do this forall pairs of break points.

O(N2)

571

53

2 Opt uncrosses edges

54

3 Opt

A B C D E F G ... H I J K L M N O P ... Q S T U V ... W X Y Z

A B C D E F G ... V U T S Q ... H I J K L M N O P ... W X Y Z

Do this forall triples of break points.

O(N3)

55

Lin-Kernighan K-Opt

Allows select k-opt moves so as to introduce a new ”short” edge not
currently being used.

Chained L-K uses soft restarts (double bridge moves) by allowing a
series of non improving moves.

56

Partial Evaluation

Tour X: A B C D E F G...H I J K L M N O P...Q S T U V W X Y Z

Tour Y: A B C D E F G...P O N M L K J I H...Q S T U V W X Y Z

F(Y) = F(X) - edge(G,H) - edge(P,Q) + edge(G,P) + edge(H,Q)

O(1) time evalution of O(n2) neighbors.

572

57

Branch and Bound on a Search Tree

Branch and Bound

1) searches every solution

or

2) proves that all solutions in some part of the tree CANNOT be optimal.

58

Branch and Bound on a Search Tree

A B C D E F G H
A

B

C

D

E

F

G

H

E

HG

C D

How can you prove a solution is NOT in a certain part of the tree?

59

The “Components” for TSP

B wa,b
C wa,c wb,c
D wa,d wb,d wc,d
E wa,e wb,e wc,e wd,e
F wa,f wb,f wc,f wd,f we,f

A B C D E

60

How can we speed up local search?

Only use the shortest edges. Usually only need 10 percent of the edges.

B XXX
C XXX wb,c
D wa,d wb,d XXX
E wa,e wb,e wc,e XXX
F wa,f XXX XXX wd,f we,f

A B C D E

On the famous ATT532 city problem, there are 532*531/2 edges.
Use the 25 shortest edges for each city (532*25).
This set includes the global optimum.

573

61

Evolutionary Algorithms

1. We generate a population of solutions

2. We take 2 parents out of the population and create 2 offspring

3. We evaluate the new offspring

4. Using “Truncation Selection” we keep the best solutions found so far
(or apply some other form of selection).

62

Evolutionary Algorithms

For bit strings, recombination is easy.

Parent One: 00000000000000000000 – 0000000000000

Parent Two: 11111111111111111111 – 1111111111111

Child: 00000000000000000000 – 1111111111111

63

Evolutionary Algorithms

But you can’t just cut and paste permutations.

Parent One: A B C D E F G – H I J K L

Parent Two: D H A F I J B – A L C E G

Child??: A B C D E F G – A L C E G

64

What if you could ...
e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

... Perform Perfect Crossover for the TSP

Respectful: All edges shared by the parents are inherited by the offspring.

Transmits Alleles: All edges in the offspring are inherited from parents.

Sometimes you can’t.

But usually you can!

574

65

What if you could ...

... “Tunnel” between local optima on a TSP.

Tunneling = jump from local optimum to local optimum

Sometimes you can’t.

But usually you can!

66

Sometimes Perfect Recombination is Impossible

67

The Partition Crossover Theorem

Let G be a graph produced by unioning 2 Hamiltonian Circuits.

Let G’ be a reduced graph so that all common subtours are replaced by a
single surrogate common edge.

If there is a partition of G’ with cost 2, then the 2 Hamiltonian Circuits
that make up G can be cut and recombined at this partition to create
two new offspring.

The resulting Partition Crossover is Respectful and Transmits alleles.

(Using G’ makes the proof easier, but is not necessary.)

68

As a side effect: f(P1) + f(P2) = f(C1) + f(C2)

575

69

Partition Crossover

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

70

Partition Crossover

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

71

Partition Crossover in O(N) time

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

72

e

j

p

n
m

f

o

h

c

i

b
q

d

g

a

r

s

z

y

xv

w

t

Why are the offspring usually local optima? Because the “pieces” that
are recombined are already locally optimal, and they are inherited intact.

Only if 2-opt moves vertices across the partition is improvement possible.

576

73

The Big Valley Hypothesis

is sometimes used to explain metaheuristic search

27800 28000 28200 28400 28600 28800 29000

0
10

20
30

40
50

60

Tour Evaluation

D
is

ta
nc

e
fro

m
 g

lo
ba

l

74

Tunneling Between Local Optima

Local Optima are “Linked” by Partition Crossover

27700 27800 27900 28000 28100 28200

0
10

20
30

Tour Evaluation

D
is

ta
nc

e
fro

m
 g

lo
ba

l

Parent Tours
Children Tours

75

Generalized Partition Crossover

All 1-point-crossovers are OK.

Generalize Partition Crossover is always feasible if the partitions have 2
exits (same color in and out). If a partition has more than 2 exits, the
“colors” must match.

This will automatically happen if all of the partitions have cut two.

76

Instance att532 nrw1379 rand1500 u1817
2-opt 3.3± 0.2 3.2± 0.2 3.7± 0.3 5.0± 0.3
3-opt 10.5± 0.5 11.3± 0.5 24.9± 0.2 26.2± 0.7

LK-search 5.3± 0.2 5.2± 0.3 10.6± 0.3 13.3± 0.4

Table: Average number of partition components used by GPX in 50
recombinations of random local optima found by 2-opt, 3-opt and LK-search.

577

77

Let P1 be a randomly generated population;
Let P2 be a temporary child population;
Forall P1: apply LK-search and evaluate;

1. Recombine best tour of P1 with the remaining t− 1 tours;
this generates a set of up to 2t offspring.

2. If recombination was not feasible
mutate tour i and place in population P2;

3. Place the best solution found so far in population P2;
4. Select offspring to fill population P2;
5. For each member of P2: apply LK-search and evaluate;
6. P1 = P2; If stopping condition not met, goto 1.

Figure: The Hybrid GA; the GA is generational, but elitist.

78

rand500 att532 nrw1379 rand1500 u1817
Hybrid GA 50/50 26/50 1/50 12/50 1/50
Chained-LK 38/50 16/50 1/50 2/50 0/50

Table: The number of times the global optimum is found by each algorithm
after 1010 calls to LK-search over 50 experiments.

79

Global Edges Global Edges Unique Edges
in Population in Minimum Tour in Population

rand500 500 ± 0 449.68 ± 1.98 941.56 ± 1.56
att532 532 ± 0 464.1 ± 2.11 979.54 ± 1.47

nrw1379 1378.9 ± 0.04 1162.3 ± 3.44 2709.34 ± 2.25
rand1500 1500 ± 0 1301.02 ± 4.15 2871.9 ± 3.14

u1817 1815.12 ± 0.18 1562.44 ± 3.22 3616.92 ± 4.71

Table: Results obtained by running the hybrid GA for only 5 generations and
without mutation.

80

Lin-Kernighan-Helsgaun-LKH

LKH is widely considered the best Local Search algorithm for TSP.

LKH uses deep k-opt moves, clever data structures and a fast
implementation.

LKH-2 has found the majority of best known solutions on the TSP
benchmarks at the Georgia Tech TSP repository that were not solved by
complete solvers: http://www.tsp.gatech.edu/data/index.html.

578

81

LKH-2 and Clustered Instances

Empirical experiments show that LKH-2 performs significantly worse on
random clustered instances than uniform random instances. We
conjecture that its performance on clustered instances could be improved
by exploiting crossover.

82

Iterative Partial Transcription and GPX

Instance C3k.0 C3k.1 C10k.0 C10k.1 C31k.0 C31k.1
LKH-2 no x-over 0.660 0.863 1.143 1.009 1.489 1.538

LKH-2 w IPT 0.622 0.656 1.040 0.873 1.280 1.274
LKH-2 w GPX 0.622 0.651 1.031 0.872 1.270 1.267

The minimum percentage above the Held-Karp Bound for several
clustered instances of the TSP of solutions found by ten random restarts
of LKH-2 without crossover, with IPT and with GPX. Best values for
each instance are in boldface. Sizes range from 3000 to 31,000 cities.

83

GPX Across Runs and Restarts

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

B1 B2 B3 B4 B5 B6 B7 B8 B9B0

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

D0 D1 D2 D3 D4 D5 D6 D7 D8

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

D9

GPX Across Runs

G
P

X
 A

c
r
o
s
s
 R

e
s
ta

r
ts

A diagram depicting 10 runs of multi-trial LKH-2 run for 5 iterations per
run. The circles represent local optima produced by LKH-2. GPX across
runs crosses over solutions with the same letters. GPX across restarts
crosses over solutions with the same numbers.

84

GPX on Clustered Problems

1 3 6 8 10
0.

03
0.

04
0.

05
0.

06

Cluster Factor

D
iff

er
en

ce
 B

et
w

ee
n

LK
H

 a
nd

 L
K

H
−G

P
X

Improvement over LKH2 using GPX on Clustered Problems.

579

85

GPX on Clustered Problems

0 10 20 30 40 50

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Iteration

M
in

im
um

 P
er

ce
nt

 A
bo

ve
 H

K
−b

ou
nd

M. LKH−2 w/ IPT
GPX across Runs
GPX across Restarts

Improvement over time on a 31,000 city Dimacs Clustered Instance.

86

GPX, Cuts on Nodes of Degree 4

87

GPX, Cuts Crossing 4 Edges

2

1

8

6

7

4
3

5

910

88

GPX, Complex Cuts

a

b

c

d

e

f

g
h

i

j

k
l

m

n

o

p

q

r

s

t

u

v
w

x

y

z

580

